Suppr超能文献

基于自监督学习的可解释性驱动样本选择在疾病分类和分割中的应用。

Interpretability-Driven Sample Selection Using Self Supervised Learning for Disease Classification and Segmentation.

出版信息

IEEE Trans Med Imaging. 2021 Oct;40(10):2548-2562. doi: 10.1109/TMI.2021.3061724. Epub 2021 Sep 30.

Abstract

In supervised learning for medical image analysis, sample selection methodologies are fundamental to attain optimum system performance promptly and with minimal expert interactions (e.g. label querying in an active learning setup). In this article we propose a novel sample selection methodology based on deep features leveraging information contained in interpretability saliency maps. In the absence of ground truth labels for informative samples, we use a novel self supervised learning based approach for training a classifier that learns to identify the most informative sample in a given batch of images. We demonstrate the benefits of the proposed approach, termed Interpretability-Driven Sample Selection (IDEAL), in an active learning setup aimed at lung disease classification and histopathology image segmentation. We analyze three different approaches to determine sample informativeness from interpretability saliency maps: (i) an observational model stemming from findings on previous uncertainty-based sample selection approaches, (ii) a radiomics-based model, and (iii) a novel data-driven self-supervised approach. We compare IDEAL to other baselines using the publicly available NIH chest X-ray dataset for lung disease classification, and a public histopathology segmentation dataset (GLaS), demonstrating the potential of using interpretability information for sample selection in active learning systems. Results show our proposed self supervised approach outperforms other approaches in selecting informative samples leading to state of the art performance with fewer samples.

摘要

在医学图像分析的监督学习中,样本选择方法对于快速获得最佳系统性能并尽可能减少专家交互(例如,在主动学习设置中查询标签)至关重要。在本文中,我们提出了一种基于深度特征的新样本选择方法,利用可解释性显着性图中包含的信息。在没有有意义样本的地面实况标签的情况下,我们使用一种新颖的基于自我监督学习的方法来训练分类器,该分类器可以学习识别给定图像批次中最有信息的样本。我们在主动学习设置中展示了所提出的方法(称为可解释性驱动的样本选择(IDEAL))的优势,该设置旨在用于肺病分类和组织病理学图像分割。我们分析了三种不同的方法,从可解释性显着性图中确定样本信息量:(i)源自先前基于不确定性的样本选择方法的观察模型,(ii)基于放射组学的模型,以及(iii)一种新颖的数据驱动的自我监督方法。我们使用公共的 NIH 胸部 X 射线数据集进行肺病分类和公共组织病理学分割数据集(GLaS)比较 IDEAL 与其他基线,证明了在主动学习系统中使用可解释性信息进行样本选择的潜力。结果表明,我们提出的自我监督方法在选择有意义的样本方面表现优于其他方法,从而可以用更少的样本实现最先进的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验