Suppr超能文献

面罩对多说话者嘈杂噪声环境中语音识别的影响。

Effects of face masks on speech recognition in multi-talker babble noise.

作者信息

Toscano Joseph C, Toscano Cheyenne M

机构信息

Department of Psychological and Brain Sciences, Villanova University, Villanova, PA, United States of America.

出版信息

PLoS One. 2021 Feb 24;16(2):e0246842. doi: 10.1371/journal.pone.0246842. eCollection 2021.

Abstract

Face masks are an important tool for preventing the spread of COVID-19. However, it is unclear how different types of masks affect speech recognition in different levels of background noise. To address this, we investigated the effects of four masks (a surgical mask, N95 respirator, and two cloth masks) on recognition of spoken sentences in multi-talker babble. In low levels of background noise, masks had little to no effect, with no more than a 5.5% decrease in mean accuracy compared to a no-mask condition. In high levels of noise, mean accuracy was 2.8-18.2% lower than the no-mask condition, but the surgical mask continued to show no significant difference. The results demonstrate that different types of masks generally yield similar accuracy in low levels of background noise, but differences between masks become more apparent in high levels of noise.

摘要

口罩是预防新冠病毒传播的重要工具。然而,尚不清楚不同类型的口罩在不同背景噪音水平下如何影响语音识别。为了解决这个问题,我们研究了四种口罩(一种外科口罩、N95呼吸器和两种布口罩)对在多说话者嘈杂声中识别口语句子的影响。在低背景噪音水平下,口罩几乎没有影响,与不戴口罩的情况相比,平均准确率下降不超过5.5%。在高噪音水平下,平均准确率比不戴口罩的情况低2.8-18.2%,但外科口罩的准确率仍无显著差异。结果表明,不同类型的口罩在低背景噪音水平下通常具有相似的准确率,但在高噪音水平下,口罩之间的差异变得更加明显。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef93/7904190/d3d4d6b47894/pone.0246842.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验