Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany. sven.stripp@fu-berlin and Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany.
Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany. sven.stripp@fu-berlin and Faculty of Physics, St. Petersburg State University, 198504 St. Petersburg, Russian Federation.
Dalton Trans. 2021 Mar 16;50(10):3641-3650. doi: 10.1039/d1dt00110h.
Hydrogenases are bidirectional redox enzymes that catalyze hydrogen turnover in archaea, bacteria, and algae. While all types of hydrogenase show H2 oxidation activity, [FeFe]-hydrogenases are excellent H2 evolution catalysts as well. Their active site cofactor comprises a [4Fe-4S] cluster covalently linked to a diiron site equipped with carbon monoxide and cyanide ligands. The active site niche is connected with the solvent by two distinct proton transfer pathways. To analyze the catalytic mechanism of [FeFe]-hydrogenase, we employ operando infrared spectroscopy and infrared spectro-electrochemistry. Titrating the pH under H2 oxidation or H2 evolution conditions reveals the influence of site-selective protonation on the equilibrium of reduced cofactor states. Governed by pKa differences across the active site niche and proton transfer pathways, we find that individual electrons are stabilized either at the [4Fe-4S] cluster (alkaline pH values) or at the diiron site (acidic pH values). This observation is discussed in the context of the complex interdependence of hydrogen turnover and bulk pH.
氢化酶是一种双向氧化还原酶,能够在古菌、细菌和藻类中催化氢气的转化。虽然所有类型的氢化酶都显示出 H2 氧化活性,但 [FeFe]-氢化酶也是优秀的 H2 析出催化剂。它们的活性位点辅因子由一个[4Fe-4S]簇与一个二铁位点组成,该二铁位点配备有一氧化碳和氰化物配体。活性位点龛通过两个独特的质子转移途径与溶剂相连。为了分析 [FeFe]-氢化酶的催化机制,我们采用了在位红外光谱和红外光谱电化学。在 H2 氧化或 H2 析出条件下滴定 pH 值,揭示了位点选择性质子化对还原辅因子态平衡的影响。受活性位点龛和质子转移途径的 pKa 差异的控制,我们发现单个电子要么稳定在[4Fe-4S]簇(碱性 pH 值)上,要么稳定在二铁位点(酸性 pH 值)上。这一观察结果在氢气转化和体相 pH 值的复杂相互依存关系的背景下进行了讨论。