Suppr超能文献

一种用于安排语言医学口译员的预测性和规范性分析框架。

A predictive and prescriptive analytical framework for scheduling language medical interpreters.

作者信息

Ahmed Abdulaziz, Frohn Elizabeth

机构信息

Business Department, University of Minnesota, Crookston, MN, USA.

Cloudbreak Healthath, Bloomington, MN, USA.

出版信息

Health Care Manag Sci. 2021 Sep;24(3):531-550. doi: 10.1007/s10729-020-09536-y. Epub 2021 Feb 24.

Abstract

Although most hospitals in the United States provide medical services in English, a significant percentage of the U.S. population uses languages other than English. Mostly, the interpreting department in a hospital finds interpreters for limited English proficiency (LEP) patients, including inpatients, outpatients, and emergency patients. The department employs full-time and part-time interpreters to cover the demand of LEP patients. Two main challenges are facing an interpreting department: 1) there are many interpreting agencies in the market in which part-time interpreters can be chosen from. Selecting a part-time interpreter with the best service quality and lowest hourly rate makes the scheduling process difficult. 2) the arrival of LEP emergency patients must be predicted to make sure that LEP emergency patients are covered and to avoid any service delay. This paper proposes a framework for scheduling full-time and part-time interpreters for medical centers. Firstly, we develop a prediction model to forecast LEP patient demand in the emergency department (ED). Secondly, we develop a multi-objective integer programming (MOIP) model to assign interpreters to inpatient, outpatient, and emergency LEP patients. The goal is to minimize the total interpreting cost, maximize the quality of the interpreting service, and maximize the utilization of full-time interpreters. Various experiments are conducted to show the robustness and practicality of the proposed framework. The schedules generated by our model are compared with the schedules generated by the interpreting department of a partner hospital. The results show that our model produces better schedules with respect to all three objectives.

摘要

尽管美国的大多数医院都用英语提供医疗服务,但相当一部分美国人口使用英语以外的语言。通常,医院的口译部门会为英语水平有限(LEP)的患者寻找口译员,包括住院患者、门诊患者和急诊患者。该部门雇佣全职和兼职口译员以满足LEP患者的需求。口译部门面临两个主要挑战:1)市场上有许多口译机构,从中可以选择兼职口译员。选择服务质量最佳且小时费率最低的兼职口译员会使排班过程变得困难。2)必须预测LEP急诊患者的到来,以确保为LEP急诊患者提供服务,并避免任何服务延迟。本文提出了一个为医疗中心安排全职和兼职口译员的框架。首先,我们开发了一个预测模型来预测急诊科(ED)的LEP患者需求。其次,我们开发了一个多目标整数规划(MOIP)模型,将口译员分配给住院、门诊和急诊LEP患者。目标是使总口译成本最小化,使口译服务质量最大化,并使全职口译员的利用率最大化。进行了各种实验以证明所提出框架的稳健性和实用性。将我们模型生成的排班与一家合作医院口译部门生成的排班进行比较。结果表明,就所有三个目标而言,我们的模型生成了更好的排班。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验