Suppr超能文献

适体偶联金纳米星的基于距离的纳米粒子表面能量转移光谱法用于冠状病毒的超灵敏检测和灭活。

Aptamer Conjugated Gold Nanostar-Based Distance-Dependent Nanoparticle Surface Energy Transfer Spectroscopy for Ultrasensitive Detection and Inactivation of Corona Virus.

机构信息

Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States.

Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi 39216, United States.

出版信息

J Phys Chem Lett. 2021 Mar 4;12(8):2166-2171. doi: 10.1021/acs.jpclett.0c03570. Epub 2021 Feb 25.

Abstract

The ongoing outbreak of the coronavirus infection has killed more than 2 million people. Herein, we demonstrate that Rhodamine 6G (Rh-6G) dye conjugated DNA aptamer-attached gold nanostar (GNS)-based distance-dependent nanoparticle surface energy transfer (NSET) spectroscopy has the capability of rapid diagnosis of specific SARS-CoV-2 spike recombinant antigen or SARS-CoV-2 spike protein pseudotyped baculovirus within 10 min. Because Rh-6G-attached single-stand DNA aptamer wrapped the GNS, 99% dye fluorescence was quenched because of the NSET process. In the presence of spike antigen or virus, the fluorescence signal persists because of the aptamer-spike protein binding. Specifically, the limit of detection for the NSET assay has been determined to be 130 fg/mL for antigen and 8 particles/mL for virus. Finally, we have demonstrated that DNA aptamer-attached GNSs can stop virus infection by blocking the angiotensin-converting enzyme 2 (ACE2) receptor binding capability and destroying the lipid membrane of the virus.

摘要

正在爆发的冠状病毒感染已导致超过 200 万人死亡。在此,我们证明 Rhodamine 6G(Rh-6G)染料偶联的 DNA 适体连接的金纳米星(GNS)基于距离依赖的纳米粒子表面能量转移(NSET)光谱法具有在 10 分钟内快速诊断特定的 SARS-CoV-2 刺突重组抗原或 SARS-CoV-2 刺突蛋白假型杆状病毒的能力。由于 Rh-6G 偶联的单链 DNA 适体包裹了 GNS,99%的染料荧光因 NSET 过程而被猝灭。在存在刺突抗原或病毒的情况下,由于适体-刺突蛋白结合,荧光信号得以持续。具体而言,NSET 测定法的检测限已确定为抗原 130 fg/mL,病毒 8 个颗粒/mL。最后,我们已经证明,DNA 适体连接的 GNS 可以通过阻断血管紧张素转换酶 2(ACE2)受体结合能力和破坏病毒的脂质膜来阻止病毒感染。

相似文献

2
Rapid SARS-CoV-2 Spike Protein Detection by Carbon Nanotube-Based Near-Infrared Nanosensors.
Nano Lett. 2021 Mar 10;21(5):2272-2280. doi: 10.1021/acs.nanolett.1c00118. Epub 2021 Feb 26.
4
2D MOF-Based Photoelectrochemical Aptasensor for SARS-CoV-2 Spike Glycoprotein Detection.
ACS Appl Mater Interfaces. 2021 Oct 27;13(42):49754-49761. doi: 10.1021/acsami.1c17574. Epub 2021 Oct 17.
5
An electrochemical SARS-CoV-2 biosensor inspired by glucose test strip manufacturing processes.
Chem Commun (Camb). 2021 Apr 18;57(30):3704-3707. doi: 10.1039/d1cc00936b. Epub 2021 Mar 17.
6
Rapid SARS-CoV-2 Detection Using Electrochemical Immunosensor.
Sensors (Basel). 2021 Jan 8;21(2):390. doi: 10.3390/s21020390.
7
DNA aptamer-linked sandwich structure enhanced SPRi sensor for rapid, sensitive, and quantitative detection of SARS-CoV-2 spike protein.
Anal Bioanal Chem. 2024 Mar;416(7):1667-1677. doi: 10.1007/s00216-024-05172-5. Epub 2024 Feb 12.
9
Quantum Dot-Conjugated SARS-CoV-2 Spike Pseudo-Virions Enable Tracking of Angiotensin Converting Enzyme 2 Binding and Endocytosis.
ACS Nano. 2020 Sep 22;14(9):12234-12247. doi: 10.1021/acsnano.0c05975. Epub 2020 Sep 4.
10
Detection of the SARS-CoV-2 spike protein in saliva with Shrinky-Dink© electrodes.
Anal Methods. 2021 Feb 25;13(7):874-883. doi: 10.1039/d1ay00041a.

引用本文的文献

1
Comparative Analysis of QCM and Electrochemical Aptasensors for SARS-CoV-2 Detection.
Biosensors (Basel). 2024 Sep 6;14(9):431. doi: 10.3390/bios14090431.
2
Emerging Trends of Gold Nanostructures for Point-of-Care Biosensor-Based Detection of COVID-19.
Mol Biotechnol. 2025 Apr;67(4):1398-1422. doi: 10.1007/s12033-024-01157-y. Epub 2024 May 4.
3
Aptamers and Nanobodies as New Bioprobes for SARS-CoV-2 Diagnostic and Therapeutic System Applications.
Biosensors (Basel). 2024 Mar 15;14(3):146. doi: 10.3390/bios14030146.
4
On-site airborne pathogen detection for infection risk mitigation.
Chem Soc Rev. 2023 Dec 11;52(24):8531-8579. doi: 10.1039/d3cs00417a.
5
Bioconjugated Nanomaterial for Targeted Diagnosis of SARS-CoV-2.
Acc Mater Res. 2022 Jan 12;3(2):134-148. doi: 10.1021/accountsmr.1c00177. eCollection 2022 Feb 25.
6
Raman and fourier transform infrared spectroscopy techniques for detection of coronavirus (COVID-19): a mini review.
Front Chem. 2023 May 18;11:1193030. doi: 10.3389/fchem.2023.1193030. eCollection 2023.
7
Recent Advances in Aptamer-Based Sensors for Sensitive Detection of Neurotransmitters.
Biosensors (Basel). 2023 Mar 23;13(4):413. doi: 10.3390/bios13040413.
8
Aptamer-based rapid diagnosis for point-of-care application.
Microfluid Nanofluidics. 2023;27(2):15. doi: 10.1007/s10404-022-02622-3. Epub 2023 Jan 18.
9
Methods of optical spectroscopy in detection of virus in infected samples: A review.
Heliyon. 2022 Sep;8(9):e10472. doi: 10.1016/j.heliyon.2022.e10472. Epub 2022 Aug 29.
10
Aptamers targeting SARS-COV-2: a promising tool to fight against COVID-19.
Trends Biotechnol. 2023 Apr;41(4):528-544. doi: 10.1016/j.tibtech.2022.07.012. Epub 2022 Aug 1.

本文引用的文献

1
Nanoparticle-Based Strategies to Combat COVID-19.
ACS Appl Nano Mater. 2020 Aug 25;3(9):8557-8580. doi: 10.1021/acsanm.0c01978. eCollection 2020 Sep 25.
3
The rapid diagnosis and effective inhibition of coronavirus using spike antibody attached gold nanoparticles.
Nanoscale Adv. 2021 Jan 18;3(6):1588-1596. doi: 10.1039/d0na01007c. eCollection 2021 Mar 21.
5
Theoretical Design of Functionalized Gold Nanoparticles as Antiviral Agents against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2).
J Phys Chem Lett. 2020 Dec 17;11(24):10284-10289. doi: 10.1021/acs.jpclett.0c02677. Epub 2020 Nov 23.
8
Gold/Silver Hybrid Nanoparticles with Enduring Inhibition of Coronavirus Multiplication through Multisite Mechanisms.
Bioconjug Chem. 2020 Nov 18;31(11):2553-2563. doi: 10.1021/acs.bioconjchem.0c00506. Epub 2020 Oct 18.
9
Mixed-Dimensional Heterostructure Material-Based SERS for Trace Level Identification of Breast Cancer-Derived Exosomes.
ACS Omega. 2020 Jul 1;5(27):16602-16611. doi: 10.1021/acsomega.0c01441. eCollection 2020 Jul 14.
10
An mRNA Vaccine against SARS-CoV-2 - Preliminary Report.
N Engl J Med. 2020 Nov 12;383(20):1920-1931. doi: 10.1056/NEJMoa2022483. Epub 2020 Jul 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验