Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
Institute for Complex Molecular Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
Biomacromolecules. 2021 Mar 8;22(3):1159-1166. doi: 10.1021/acs.biomac.0c01663. Epub 2021 Feb 25.
A polymeric corona consisting of an alkyl-glycolic acid ethoxylate (CEO) surfactant offers a promising approach toward endowing proteins with thermotropic phase behavior and hyperthermal activity. Typically, preparation of protein-surfactant biohybrids is performed chemical modification of acidic residues followed by electrostatic conjugation of an anionic surfactant to encapsulate single proteins. While this procedure has been applied to a broad range of proteins, modification of acidic residues may be detrimental to function for specific enzymes. Herein, we report on the one-pot preparation of biohybrids covalent conjugation of surfactants to accessible lysine residues. We entrap the model enzyme hen egg-white lysozyme (HEWL) in a shell of carboxyl-functionalized CEO or CEO surfactants. With fewer surfactants, our covalent biohybrids display similar thermotropic phase behavior to their electrostatically conjugated analogues. Through a combination of small-angle X-ray scattering and circular dichroism spectroscopy, we find that both classes of biohybrids consist of a folded single-protein core decorated by surfactants. Whilst traditional biohybrids retain densely packed surfactant coronas, our biohybrids display a less dense and heterogeneously distributed surfactant coverage located opposite to the catalytic cleft of HEWL. In solution, this surfactant coating permits 7- or 3.5-fold improvements in activity retention for biohybrids containing CEO or CEO, respectively. The reported alternative pathway for biohybrid preparation offers a new horizon to expand upon the library of proteins for which functional biohybrid materials can be prepared. We also expect that an improved understanding of the distribution of tethered surfactants in the corona will be crucial for future structure-function investigations.
一种由烷基-乙二醇酸乙氧基化物(CEO)表面活性剂组成的聚合冠提供了一种很有前途的方法,可以赋予蛋白质热致相行为和超热活性。通常,制备蛋白-表面活性剂生物杂种是通过对酸性残基进行化学修饰,然后静电结合阴离子表面活性剂来包裹单个蛋白质来完成的。虽然这种方法已经应用于广泛的蛋白质,但酸性残基的修饰可能对特定酶的功能有害。在此,我们报告了一种一锅法制备生物杂种的方法,即通过共价键将表面活性剂结合到可及的赖氨酸残基上。我们将模型酶鸡卵清溶菌酶(HEWL)包埋在羧基功能化的 CEO 或 CEO 表面活性剂形成的壳中。与使用较少的表面活性剂相比,我们的共价生物杂种表现出与静电结合类似物相似的热致相行为。通过小角 X 射线散射和圆二色性光谱的结合,我们发现这两种类型的生物杂种都由折叠的单个蛋白质核心组成,表面活性剂则装饰在其周围。虽然传统的生物杂种保留了密集的表面活性剂冠,但我们的生物杂种显示出较少的、不均匀分布的表面活性剂覆盖,位于 HEWL 的催化裂缝对面。在溶液中,这种表面活性剂涂层可以使包含 CEO 或 CEO 的生物杂种的活性保留分别提高 7 倍或 3.5 倍。所报道的生物杂种制备的替代途径为扩展可制备功能生物杂种材料的蛋白质库提供了一个新的方向。我们还期望对冠冕中连接的表面活性剂的分布有更好的理解,这对于未来的结构功能研究将是至关重要的。