Centre Borelli CNRS INSERM, ENS Paris-Saclay, Paris-Saclay University, Gif-sur-Yvette, France.
Centre Borelli CNRS INSERM, Université de Paris, Paris, France.
PLoS One. 2021 Feb 25;16(2):e0246790. doi: 10.1371/journal.pone.0246790. eCollection 2021.
Falling in Parkinsonian syndromes (PS) is associated with postural instability and consists a common cause of disability among PS patients. Current posturographic practices record the body's center-of-pressure displacement (statokinesigram) while the patient stands on a force platform. Statokinesigrams, after appropriate processing, can offer numerous posturographic features. This fact, although beneficial, challenges the efforts for valid statistics via standard univariate approaches. In this work, 123 PS patients were classified into fallers (PSF) or non-faller (PSNF) based on the clinical assessment, and underwent simple Romberg Test (eyes open/eyes closed). We developed a non-parametric multivariate two-sample test (ts-AUC) based on machine learning, in order to examine statokinesigrams' differences between PSF and PSNF. We analyzed posturographic features using both multiple testing with p-value adjustment and ts-AUC. While ts-AUC showed significant difference between groups (p-value = 0.01), multiple testing did not agree with this result (eyes open). PSF showed significantly increased antero-posterior movements as well as increased posturographic area compared to PSNF. Our study highlights the superiority of ts-AUC compared to standard statistical tools in distinguishing PSF and PSNF in multidimensional space. Machine learning-based statistical tests can be seen as a natural extension of classical statistics and should be considered, especially when dealing with multifactorial assessments.
在帕金森综合征(PS)中,跌倒与姿势不稳有关,是 PS 患者残疾的常见原因。目前的动态姿势描记术记录了患者站在力平台上时的身体重心位移(静态运动描记图)。经过适当处理后,静态运动描记图可以提供许多姿势描记特征。这一事实虽然有益,但却对通过标准单变量方法进行有效统计提出了挑战。在这项工作中,根据临床评估,将 123 名 PS 患者分为跌倒者(PSF)或非跌倒者(PSNF),并进行简单的 Romberg 测试(睁眼/闭眼)。我们开发了一种基于机器学习的非参数多元两样本检验(ts-AUC),以检查 PSF 和 PSNF 之间静态运动描记图的差异。我们使用多重检验和 p 值调整以及 ts-AUC 分析了姿势描记特征。虽然 ts-AUC 显示组间有显著差异(p 值=0.01),但多重检验并不同意这一结果(睁眼)。与 PSNF 相比,PSF 表现出明显增加的前后运动以及增加的姿势描记面积。我们的研究强调了 ts-AUC 与标准统计工具相比在多维空间中区分 PSF 和 PSNF 的优越性。基于机器学习的统计检验可以被视为经典统计学的自然延伸,应予以考虑,特别是在处理多因素评估时。