Suppr超能文献

Aristolochia fimbriata(马兜铃科)花表皮特化的基因表达。

Gene expression underlying floral epidermal specialization in Aristolochia fimbriata (Aristolochiaceae).

机构信息

Instituto de Biología, Universidad de Antioquia, Medellín, Colombia.

Centro Nacional de Secuenciación Genómica (CNSG), Sede de Investigación Universitaria, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.

出版信息

Ann Bot. 2021 May 7;127(6):749-764. doi: 10.1093/aob/mcab033.

Abstract

BACKGROUND AND AIMS

The epidermis constitutes the outermost tissue of the plant body. Although it plays major structural, physiological and ecological roles in embryophytes, the molecular mechanisms controlling epidermal cell fate, differentiation and trichome development have been scarcely studied across angiosperms, and remain almost unexplored in floral organs.

METHODS

In this study, we assess the spatio-temporal expression patterns of GL2, GL3, TTG1, TRY, MYB5, MYB6, HDG2, MYB106-like, WIN1 and RAV1-like homologues in the magnoliid Aristolochia fimbriata (Aristolochiaceae) by using comparative RNA-sequencing and in situ hybridization assays.

KEY RESULTS

Genes involved in Aristolochia fimbriata trichome development vary depending on the organ where they are formed. Stem, leaf and pedicel trichomes recruit most of the transcription factors (TFs) described above. Conversely, floral trichomes only use a small subset of genes including AfimGL2, AfimRAV1-like, AfimWIN1, AfimMYB106-like and AfimHDG2. The remaining TFs, AfimTTG1, AfimGL3, AfimTRY, AfimMYB5 and AfimMYB6, are restricted to the abaxial (outer) and the adaxial (inner) pavement epidermal cells.

CONCLUSIONS

We re-evaluate the core genetic network shaping trichome fate in flowers of an early-divergent angiosperm lineage and show a morphologically diverse output with a simpler genetic mechanism in place when compared to the models Arabidopsis thaliana and Cucumis sativus. In turn, our results strongly suggest that the canonical trichome gene expression appears to be more conserved in vegetative than in floral tissues across angiosperms.

摘要

背景和目的

表皮是植物体的最外层组织。尽管它在胚胎植物中发挥着主要的结构、生理和生态作用,但控制表皮细胞命运、分化和毛状体发育的分子机制在被子植物中研究甚少,在花器官中几乎未被探索。

方法

在这项研究中,我们通过比较 RNA 测序和原位杂交试验,评估了在木兰类植物马兜铃科马兜铃属(Aristolochia fimbriata)中 GL2、GL3、TTG1、TRY、MYB5、MYB6、HDG2、MYB106 类、WIN1 和 RAV1 类同源物的时空表达模式。

主要结果

参与马兜铃属毛状体发育的基因因形成器官而异。茎、叶和花梗毛状体募集了上述大部分转录因子(TFs)。相反,花毛状体仅使用一小部分基因,包括 AfimGL2、AfimRAV1-like、AfimWIN1、AfimMYB106-like 和 AfimHDG2。其余的 TFs,AfimTTG1、AfimGL3、AfimTRY、AfimMYB5 和 AfimMYB6,仅局限于背侧(外)和腹侧(内)的扁平表皮细胞。

结论

我们重新评估了形成花毛状体命运的核心遗传网络,并展示了一个形态多样的输出,与拟南芥和黄瓜的模型相比,其遗传机制更为简单。反过来,我们的结果强烈表明,在被子植物中,经典毛状体基因表达在营养组织中比在花组织中更为保守。

相似文献

5
Deep into the Aristolochia Flower: Expression of C, D, and E-Class Genes in Aristolochia fimbriata (Aristolochiaceae).
J Exp Zool B Mol Dev Evol. 2017 Jan;328(1-2):55-71. doi: 10.1002/jez.b.22686. Epub 2016 Aug 10.
6
Evolution of the Subgroup 6 Genes and Their Contribution to Floral Color in the Perianth-Bearing Piperales.
Front Plant Sci. 2021 Apr 9;12:633227. doi: 10.3389/fpls.2021.633227. eCollection 2021.
8
Insights into angiosperm evolution, floral development and chemical biosynthesis from the Aristolochia fimbriata genome.
Nat Plants. 2021 Sep;7(9):1239-1253. doi: 10.1038/s41477-021-00990-2. Epub 2021 Sep 2.

引用本文的文献

1
Evolution of petal patterning: blooming floral diversity at the microscale.
New Phytol. 2025 Sep;247(6):2538-2556. doi: 10.1111/nph.70370. Epub 2025 Jul 8.
2
Uncovering developmental diversity in the field.
Development. 2024 Oct 15;151(20). doi: 10.1242/dev.203084. Epub 2024 Aug 19.
3
Expression and Functional Studies of Leaf, Floral, and Fruit Developmental Genes in Non-model Species.
Methods Mol Biol. 2023;2686:365-401. doi: 10.1007/978-1-0716-3299-4_19.
4
De novo Assembly and Comparative Analyses of Mitochondrial Genomes in Piperales.
Genome Biol Evol. 2023 Mar 3;15(3). doi: 10.1093/gbe/evad041.

本文引用的文献

1
Floral micromorphology and nectar composition of the early evolutionary lineage Utricularia (subgenus Polypompholyx, Lentibulariaceae).
Protoplasma. 2019 Nov;256(6):1531-1543. doi: 10.1007/s00709-019-01401-2. Epub 2019 Jun 12.
2
Nectar-Secreting and Nectarless : Structure of the Inner Floral Spur.
Front Plant Sci. 2018 Jun 20;9:840. doi: 10.3389/fpls.2018.00840. eCollection 2018.
3
A CsMYB6-CsTRY module regulates fruit trichome initiation in cucumber.
J Exp Bot. 2018 Apr 9;69(8):1887-1902. doi: 10.1093/jxb/ery047.
5
Arabidopsis Leaf Trichomes as Acoustic Antennae.
Biophys J. 2017 Nov 7;113(9):2068-2076. doi: 10.1016/j.bpj.2017.07.035.
6
Trichome patterning control involves TTG1 interaction with SPL transcription factors.
Plant Mol Biol. 2016 Dec;92(6):675-687. doi: 10.1007/s11103-016-0538-8. Epub 2016 Sep 8.
8
Trichomes control flower bud shape by linking together young petals.
Nat Plants. 2016 Jun 20;2:16093. doi: 10.1038/nplants.2016.93.
9
Near-optimal probabilistic RNA-seq quantification.
Nat Biotechnol. 2016 May;34(5):525-7. doi: 10.1038/nbt.3519. Epub 2016 Apr 4.
10
The Arabidopsis trichome is an active mechanosensory switch.
Plant Cell Environ. 2017 May;40(5):611-621. doi: 10.1111/pce.12728. Epub 2016 May 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验