Suppr超能文献

基于机器学习的危重症患者肾替代治疗撤机成功的预测。

Prediction of successful weaning from renal replacement therapy in critically ill patients based on machine learning.

机构信息

General Intensive Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.

Key Laboratory of Multiple Organ Failure, China National Ministry of Education, Hangzhou, PR China.

出版信息

Ren Fail. 2024 Dec;46(1):2319329. doi: 10.1080/0886022X.2024.2319329. Epub 2024 Feb 28.

Abstract

BACKGROUND

Predicting the successful weaning of acute kidney injury (AKI) patients from renal replacement therapy (RRT) has emerged as a research focus, and we successfully built predictive models for RRT withdrawal in patients with severe AKI by machine learning.

METHODS

This retrospective single-center study utilized data from our general intensive care unit (ICU) Database, focusing on patients diagnosed with severe AKI who underwent RRT. We evaluated RRT weaning success based on patients being free of RRT in the subsequent week and their overall survival. Multiple logistic regression (MLR) and machine learning algorithms were adopted to construct the prediction models.

RESULTS

A total of 976 patients were included, with 349 patients successfully weaned off RRT. Longer RRT duration (7.0 9.6 d,  = 0.002, OR = 0.94), higher serum cystatin C levels (1.2 3.2 mg/L,  < 0.001, OR = 0.46), and the presence of septic shock (28.1% 41.5%,  < 0.001, OR = 0.63) were associated with reduced likelihood of RRT weaning. Conversely, a positive furosemide stress test (FST) (60.2% 40.7%,  < 0.001, OR = 2.75) and higher total urine volume 3 d before RRT withdrawal (755 125 mL/d,  < 0.001, OR = 2.12) were associated with an increased likelihood of successful weaning from RRT. Next, we demonstrated that machine learning models, especially Random Forest and XGBoost, achieving an AUROC of 0.95. The XGBoost model exhibited superior accuracy, yielding an AUROC of 0.849.

CONCLUSION

High-risk factors for unsuccessful RRT weaning in severe AKI patients include prolonged RRT duration. Machine learning prediction models, when compared to models based on multivariate logistic regression using these indicators, offer distinct advantages in predictive accuracy.

摘要

背景

预测急性肾损伤(AKI)患者从肾脏替代治疗(RRT)成功撤机已成为研究热点,我们通过机器学习成功构建了重症 AKI 患者 RRT 撤机的预测模型。

方法

本回顾性单中心研究利用我院综合重症监护病房(ICU)数据库的数据,聚焦于接受 RRT 的重症 AKI 患者。根据患者在接下来的一周内是否不再需要 RRT 以及他们的总生存率来评估 RRT 撤机的成功。采用多变量逻辑回归(MLR)和机器学习算法来构建预测模型。

结果

共纳入 976 例患者,其中 349 例患者成功撤机。RRT 持续时间较长(7.0±9.6 d,=0.002,OR=0.94)、血清胱抑素 C 水平较高(1.23.2mg/L,<0.001,OR=0.46)和存在感染性休克(28.1%41.5%,<0.001,OR=0.63)与 RRT 撤机的可能性降低相关。相反,呋塞米应激试验(FST)阳性(60.2%~40.7%,<0.001,OR=2.75)和 RRT 撤机前 3 d 的总尿量较高(755±125mL/d,<0.001,OR=2.12)与 RRT 成功撤机的可能性增加相关。接下来,我们发现机器学习模型,尤其是随机森林和 XGBoost,其 AUC 达到 0.95。XGBoost 模型的准确性更高,AUC 为 0.849。

结论

重症 AKI 患者 RRT 撤机失败的高危因素包括 RRT 持续时间较长。与基于这些指标的多变量逻辑回归模型相比,机器学习预测模型在预测准确性方面具有明显优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d886/10903749/c4989a7999e5/IRNF_A_2319329_F0001_C.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验