Suppr超能文献

远红光大功率捕获:叶绿素 f 在集胞藻 PCC 7002 光系统 I 复合物中的功能整合。

Harvesting far-red light: Functional integration of chlorophyll f into Photosystem I complexes of Synechococcus sp. PCC 7002.

机构信息

Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, the Netherlands.

Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.

出版信息

Biochim Biophys Acta Bioenerg. 2020 Aug 1;1861(8):148206. doi: 10.1016/j.bbabio.2020.148206. Epub 2020 Apr 17.

Abstract

The heterologous expression of the far-red absorbing chlorophyll (Chl) f in organisms that do not synthesize this pigment has been suggested as a viable solution to expand the solar spectrum that drives oxygenic photosynthesis. In this study, we investigate the functional binding of Chl f to the Photosystem I (PSI) of the cyanobacterium Synechococcus 7002, which has been engineered to express the Chl f synthase gene. By optimizing growth light conditions, one-to-four Chl f pigments were found in the complexes. By using a range of spectroscopic techniques, isolated PSI trimeric complexes were investigated to determine how the insertion of Chl f affects excitation energy transfer and trapping efficiency. The results show that the Chls f are functionally connected to the reaction center of the PSI complex and their presence does not change the overall pigment organization of the complex. Chl f substitutes Chl a (but not the Chl a red forms) while maintaining efficient energy transfer within the PSI complex. At the same time, the introduction of Chl f extends the photosynthetically active radiation of the new hybrid PSI complexes up to 750 nm, which is advantageous in far-red light enriched environments. These conclusions provide insights to engineer the photosynthetic machinery of crops to include Chl f and therefore increase the light-harvesting capability of photosynthesis.

摘要

在不合成这种色素的生物体中异源表达远红吸收叶绿素 (Chl) f 已被提议为扩大驱动需氧光合作用的太阳光谱的可行解决方案。在这项研究中,我们研究了已被工程化为表达 Chl f 合酶基因的蓝细菌 Synechococcus 7002 中的 PSI 对 Chl f 的功能结合。通过优化生长光条件,在复合物中发现了一个到四个 Chl f 色素。通过使用一系列光谱技术,研究了分离的 PSI 三聚体复合物,以确定 Chl f 的插入如何影响激发能量转移和捕获效率。结果表明,Chl f 与 PSI 复合物的反应中心功能连接,其存在不会改变复合物的整体色素组织。Chl f 替代 Chl a(但不是 Chl a 红色形式),同时保持 PSI 复合物内的有效能量转移。同时,Chl f 的引入将新的杂交 PSI 复合物的光合有效辐射扩展到 750nm,这在富含远红光的环境中是有利的。这些结论为工程改造包括 Chl f 的作物光合作用机制提供了见解,从而提高了光合作用的光捕获能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验