Suppr超能文献

脑和睾丸中的剪接调控:高度特化器官的共同主题。

Splicing regulation in brain and testis: common themes for highly specialized organs.

机构信息

Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy.

Organoids Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy.

出版信息

Cell Cycle. 2021 Mar-Mar;20(5-6):480-489. doi: 10.1080/15384101.2021.1889187. Epub 2021 Feb 26.

Abstract

Expansion of the coding and regulatory capabilities of eukaryotic transcriptomes by alternative splicing represents one of the evolutionary forces underlying the increased structural complexity of metazoans. Brain and testes stand out as the organs that mostly exploit the potential of alternative splicing, thereby expressing the largest repertoire of splice variants. Herein, we will review organ-specific as well as common mechanisms underlying the high transcriptome complexity of these organs and discuss the impact exerted by this widespread alternative splicing regulation on the functionality and differentiation of brain and testicular cells.

摘要

通过选择性剪接扩展真核转录组的编码和调控能力,是后生动物结构复杂性增加的进化驱动力之一。大脑和睾丸是最能挖掘选择性剪接潜能的器官,从而表达最大的剪接变体谱。本文将综述这些器官高转录组复杂性的组织特异性和共同机制,并讨论这种广泛存在的选择性剪接调控对脑和睾丸细胞功能和分化的影响。

相似文献

1
Splicing regulation in brain and testis: common themes for highly specialized organs.
Cell Cycle. 2021 Mar-Mar;20(5-6):480-489. doi: 10.1080/15384101.2021.1889187. Epub 2021 Feb 26.
2
Alternative splicing in the testes.
Curr Opin Genet Dev. 2002 Oct;12(5):615-19. doi: 10.1016/s0959-437x(02)00347-7.
3
The Function of Pre-mRNA Alternative Splicing in Mammal Spermatogenesis.
Int J Biol Sci. 2020 Jan 1;16(1):38-48. doi: 10.7150/ijbs.34422. eCollection 2020.
4
Dynamic regulation of alternative splicing and chromatin structure in Drosophila gonads revealed by RNA-seq.
Cell Res. 2010 Jul;20(7):763-83. doi: 10.1038/cr.2010.64. Epub 2010 May 4.
5
Splicing in the human brain.
Int Rev Neurobiol. 2014;116:95-125. doi: 10.1016/B978-0-12-801105-8.00005-9.
6
New transcriptomic tools to understand testis development and functions.
Mol Cell Endocrinol. 2018 Jun 15;468:47-59. doi: 10.1016/j.mce.2018.02.019. Epub 2018 Mar 1.
7
Cell Type-Specific Expression of Testis Elevated Genes Based on Transcriptomics and Antibody-Based Proteomics.
J Proteome Res. 2019 Dec 6;18(12):4215-4230. doi: 10.1021/acs.jproteome.9b00351. Epub 2019 Aug 29.

引用本文的文献

2
SRSF12 is a primate-specific splicing factor that induces a tissue-specific gene expression program.
bioRxiv. 2025 Jul 27:2025.07.25.666902. doi: 10.1101/2025.07.25.666902.
3
Roles of human SPATA3 in cell proliferation and expression pattern of in mouse testis.
Mol Med Rep. 2025 Sep;32(3). doi: 10.3892/mmr.2025.13620. Epub 2025 Jul 11.
4
Domain acquisition enabled functional expansion of the TFIIS transcription factor family.
Cell Biosci. 2025 Jun 4;15(1):78. doi: 10.1186/s13578-025-01423-9.
6
Data-driven insights to inform splice-altering variant assessment.
Am J Hum Genet. 2025 Apr 3;112(4):764-778. doi: 10.1016/j.ajhg.2025.02.012. Epub 2025 Mar 7.
7
A Developmental Gene Expression Atlas Reveals Novel Biological Basis of Complex Phenotypes in Sheep.
Genomics Proteomics Bioinformatics. 2025 May 10;23(1). doi: 10.1093/gpbjnl/qzaf020.
8
Changes in RNA Splicing: A New Paradigm of Transcriptional Responses to Probiotic Action in the Mammalian Brain.
Microorganisms. 2025 Jan 14;13(1):165. doi: 10.3390/microorganisms13010165.

本文引用的文献

2
Concentration-dependent splicing is enabled by Rbfox motifs of intermediate affinity.
Nat Struct Mol Biol. 2020 Oct;27(10):901-912. doi: 10.1038/s41594-020-0475-8. Epub 2020 Aug 17.
3
Regional Variation of Splicing QTLs in Human Brain.
Am J Hum Genet. 2020 Aug 6;107(2):196-210. doi: 10.1016/j.ajhg.2020.06.002. Epub 2020 Jun 25.
4
A Dynamic Splicing Program Ensures Proper Synaptic Connections in the Developing Cerebellum.
Cell Rep. 2020 Jun 2;31(9):107703. doi: 10.1016/j.celrep.2020.107703.
6
Technological advances and computational approaches for alternative splicing analysis in single cells.
Comput Struct Biotechnol J. 2020 Feb 5;18:332-343. doi: 10.1016/j.csbj.2020.01.009. eCollection 2020.
7
Widespread Transcriptional Scanning in the Testis Modulates Gene Evolution Rates.
Cell. 2020 Jan 23;180(2):248-262.e21. doi: 10.1016/j.cell.2019.12.015.
8
mA mRNA Methylation Is Essential for Oligodendrocyte Maturation and CNS Myelination.
Neuron. 2020 Jan 22;105(2):293-309.e5. doi: 10.1016/j.neuron.2019.12.013. Epub 2019 Dec 31.
9
Genome-Wide Analysis of Differential Gene Expression and Splicing in Excitatory Neurons and Interneuron Subtypes.
J Neurosci. 2020 Jan 29;40(5):958-973. doi: 10.1523/JNEUROSCI.1615-19.2019. Epub 2019 Dec 12.
10
SAM68-Specific Splicing Is Required for Proper Selection of Alternative 3' UTR Isoforms in the Nervous System.
iScience. 2019 Dec 20;22:318-335. doi: 10.1016/j.isci.2019.11.028. Epub 2019 Nov 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验