Departments of Bioinformatics and Computational Biology, and
Neuroscience, Genentech, Inc., South San Francisco, California 94080-4918.
J Neurosci. 2020 Jan 29;40(5):958-973. doi: 10.1523/JNEUROSCI.1615-19.2019. Epub 2019 Dec 12.
Cortical circuit activity is shaped by the parvalbumin (PV) and somatostatin (SST) interneurons that inhibit principal excitatory (EXC) neurons and the vasoactive intestinal peptide (VIP) interneurons that suppress activation of other interneurons. To understand the molecular-genetic basis of functional specialization and identify potential drug targets specific to each neuron subtype, we performed a genome wide assessment of both gene expression and splicing across EXC, PV, SST and VIP neurons from male and female mouse brains. These results reveal numerous examples where neuron subtype-specific gene expression, as well as splice-isoform usage, can explain functional differences between neuron subtypes, including in presynaptic plasticity, postsynaptic receptor function, and synaptic connectivity specification. We provide a searchable web resource for exploring differential mRNA expression and splice form usage between excitatory, PV, SST, and VIP neurons (http://research-pub.gene.com/NeuronSubtypeTranscriptomes). This resource, combining a unique new dataset and novel application of analysis methods to multiple relevant datasets, identifies numerous potential drug targets for manipulating circuit function, reveals neuron subtype-specific roles for disease-linked genes, and is useful for understanding gene expression changes observed in human patient brains. Understanding the basis of functional specialization of neuron subtypes and identifying drug targets for manipulating circuit function requires comprehensive information on cell-type-specific transcriptional profiles. We sorted excitatory neurons and key inhibitory neuron subtypes from mouse brains and assessed differential mRNA expression. We used a genome-wide analysis which not only examined differential gene expression levels but could also detect differences in splice isoform usage. This analysis reveals numerous examples of neuron subtype-specific isoform usage with functional importance, identifies potential drug targets, and provides insight into the neuron subtypes involved in psychiatric disease. We also apply our analysis to two other relevant datasets for comparison, and provide a searchable website for convenient access to the resource.
皮层回路活动由抑制主要兴奋性 (EXC) 神经元的 parvalbumin (PV) 和 somatostatin (SST) 中间神经元以及抑制其他中间神经元激活的 vasoactive intestinal peptide (VIP) 中间神经元塑造。为了了解功能特化的分子遗传基础并确定针对每种神经元亚型的潜在药物靶点,我们对雄性和雌性小鼠大脑中的 EXC、PV、SST 和 VIP 神经元进行了全基因组的基因表达和剪接评估。这些结果揭示了许多例子,其中神经元亚型特异性的基因表达以及剪接异构体的使用可以解释神经元亚型之间的功能差异,包括在突触前可塑性、突触后受体功能和突触连接指定方面。我们提供了一个可搜索的网络资源,用于探索兴奋性、PV、SST 和 VIP 神经元之间的差异 mRNA 表达和剪接形式使用情况 (http://research-pub.gene.com/NeuronSubtypeTranscriptomes)。该资源结合了独特的新数据集和对多个相关数据集的新颖分析方法应用,确定了许多用于操纵回路功能的潜在药物靶点,揭示了与疾病相关的基因在神经元亚型特异性中的作用,并且有助于理解在人类患者大脑中观察到的基因表达变化。了解神经元亚型功能特化的基础和确定用于操纵回路功能的药物靶点需要有关细胞类型特异性转录谱的综合信息。我们从老鼠大脑中分拣出兴奋性神经元和关键抑制性神经元亚型,并评估了差异 mRNA 表达。我们使用了一种全基因组分析方法,不仅检查了差异基因表达水平,还可以检测剪接异构体使用的差异。该分析揭示了许多具有功能重要性的神经元亚型特异性异构体使用的例子,确定了潜在的药物靶点,并深入了解了涉及精神疾病的神经元亚型。我们还将我们的分析应用于另外两个相关数据集进行比较,并提供了一个可搜索的网站,方便访问该资源。