Suppr超能文献

估算 COVID-19 死亡率:监测 COVID-19 和季节性流感的统计模型,丹麦,2020 年春季。

Estimates of mortality attributable to COVID-19: a statistical model for monitoring COVID-19 and seasonal influenza, Denmark, spring 2020.

机构信息

Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Denmark.

Section of Epidemiology, Department of Public Health, University of Copenhagen, Denmark.

出版信息

Euro Surveill. 2021 Feb;26(8). doi: 10.2807/1560-7917.ES.2021.26.8.2001646.

Abstract

BackgroundTimely monitoring of COVID-19 impact on mortality is critical for rapid risk assessment and public health action.AimBuilding upon well-established models to estimate influenza-related mortality, we propose a new statistical Attributable Mortality Model (AttMOMO), which estimates mortality attributable to one or more pathogens simultaneously (e.g. SARS-CoV-2 and seasonal influenza viruses), while adjusting for seasonality and excess temperatures.MethodsData from Nationwide Danish registers from 2014-week(W)W27 to 2020-W22 were used to exemplify utilities of the model, and to estimate COVID-19 and influenza attributable mortality from 2019-W40 to 2020-W20.ResultsSARS-CoV-2 was registered in Denmark from 2020-W09. Mortality attributable to COVID-19 in Denmark increased steeply, and peaked in 2020-W14. As preventive measures and national lockdown were implemented from 2020-W12, the attributable mortality started declining within a few weeks. Mortality attributable to COVID-19 from 2020-W09 to 2020-W20 was estimated to 16.2 (95% confidence interval (CI): 12.0 to 20.4) per 100,000 person-years. The 2019/20 influenza season was mild with few deaths attributable to influenza, 3.2 (95% CI: 1.1 to 5.4) per 100,000 person-years.ConclusionAttMOMO estimates mortality attributable to several pathogens simultaneously, providing a fuller picture of mortality by COVID-19 during the pandemic in the context of other seasonal diseases and mortality patterns. Using Danish data, we show that the model accurately estimates mortality attributable to COVID-19 and influenza, respectively. We propose using standardised indicators for pathogen circulation in the population, to make estimates comparable between countries and applicable for timely monitoring.

摘要

背景

及时监测 COVID-19 对死亡率的影响对于快速风险评估和公共卫生行动至关重要。

目的

在成熟的流感相关死亡率估计模型基础上,我们提出了一种新的归因死亡率模型(AttMOMO),该模型可以同时估计一种或多种病原体(例如 SARS-CoV-2 和季节性流感病毒)导致的死亡率,同时调整季节性和超额温度的影响。

方法

利用丹麦全国性登记数据(2014 年第 27 周到 2020 年第 22 周)来说明模型的实用性,并估计 2019 年第 40 周到 2020 年第 20 周的 COVID-19 和流感归因死亡率。

结果

2020 年第 9 周在丹麦登记了 SARS-CoV-2。丹麦 COVID-19 归因死亡率急剧上升,并在 2020 年第 14 周达到峰值。随着 2020 年第 12 周开始实施预防措施和全国封锁,归因死亡率在数周内开始下降。2020 年第 9 周到 2020 年第 20 周归因于 COVID-19 的死亡率估计为每 100,000 人年 16.2(95%置信区间(CI):12.0 至 20.4)。2019/20 流感季节较为温和,归因于流感的死亡人数较少,为每 100,000 人年 3.2(95%CI:1.1 至 5.4)。

结论

AttMOMO 可以同时估计多种病原体导致的死亡率,在季节性疾病和死亡率模式的背景下,更全面地了解大流行期间 COVID-19 导致的死亡率。使用丹麦数据,我们表明该模型可以准确估计 COVID-19 和流感导致的死亡率。我们建议使用人群中病原体循环的标准化指标,使各国之间的估计具有可比性,并可用于及时监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0139/7908066/14cdd5d96b6a/2001646-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验