Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Denmark.
Section of Epidemiology, Department of Public Health, University of Copenhagen, Denmark.
Euro Surveill. 2021 Feb;26(8). doi: 10.2807/1560-7917.ES.2021.26.8.2001646.
BackgroundTimely monitoring of COVID-19 impact on mortality is critical for rapid risk assessment and public health action.AimBuilding upon well-established models to estimate influenza-related mortality, we propose a new statistical Attributable Mortality Model (AttMOMO), which estimates mortality attributable to one or more pathogens simultaneously (e.g. SARS-CoV-2 and seasonal influenza viruses), while adjusting for seasonality and excess temperatures.MethodsData from Nationwide Danish registers from 2014-week(W)W27 to 2020-W22 were used to exemplify utilities of the model, and to estimate COVID-19 and influenza attributable mortality from 2019-W40 to 2020-W20.ResultsSARS-CoV-2 was registered in Denmark from 2020-W09. Mortality attributable to COVID-19 in Denmark increased steeply, and peaked in 2020-W14. As preventive measures and national lockdown were implemented from 2020-W12, the attributable mortality started declining within a few weeks. Mortality attributable to COVID-19 from 2020-W09 to 2020-W20 was estimated to 16.2 (95% confidence interval (CI): 12.0 to 20.4) per 100,000 person-years. The 2019/20 influenza season was mild with few deaths attributable to influenza, 3.2 (95% CI: 1.1 to 5.4) per 100,000 person-years.ConclusionAttMOMO estimates mortality attributable to several pathogens simultaneously, providing a fuller picture of mortality by COVID-19 during the pandemic in the context of other seasonal diseases and mortality patterns. Using Danish data, we show that the model accurately estimates mortality attributable to COVID-19 and influenza, respectively. We propose using standardised indicators for pathogen circulation in the population, to make estimates comparable between countries and applicable for timely monitoring.
及时监测 COVID-19 对死亡率的影响对于快速风险评估和公共卫生行动至关重要。
在成熟的流感相关死亡率估计模型基础上,我们提出了一种新的归因死亡率模型(AttMOMO),该模型可以同时估计一种或多种病原体(例如 SARS-CoV-2 和季节性流感病毒)导致的死亡率,同时调整季节性和超额温度的影响。
利用丹麦全国性登记数据(2014 年第 27 周到 2020 年第 22 周)来说明模型的实用性,并估计 2019 年第 40 周到 2020 年第 20 周的 COVID-19 和流感归因死亡率。
2020 年第 9 周在丹麦登记了 SARS-CoV-2。丹麦 COVID-19 归因死亡率急剧上升,并在 2020 年第 14 周达到峰值。随着 2020 年第 12 周开始实施预防措施和全国封锁,归因死亡率在数周内开始下降。2020 年第 9 周到 2020 年第 20 周归因于 COVID-19 的死亡率估计为每 100,000 人年 16.2(95%置信区间(CI):12.0 至 20.4)。2019/20 流感季节较为温和,归因于流感的死亡人数较少,为每 100,000 人年 3.2(95%CI:1.1 至 5.4)。
AttMOMO 可以同时估计多种病原体导致的死亡率,在季节性疾病和死亡率模式的背景下,更全面地了解大流行期间 COVID-19 导致的死亡率。使用丹麦数据,我们表明该模型可以准确估计 COVID-19 和流感导致的死亡率。我们建议使用人群中病原体循环的标准化指标,使各国之间的估计具有可比性,并可用于及时监测。