Suppr超能文献

基于全因死亡率确定的 2010/11-2016/17 年丹麦流感相关死亡率:FluMOMO 模型。

Influenza-associated mortality determined from all-cause mortality, Denmark 2010/11-2016/17: The FluMOMO model.

机构信息

Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen S, Denmark.

Department of Veterinary and Animal Science, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark.

出版信息

Influenza Other Respir Viruses. 2018 Sep;12(5):591-604. doi: 10.1111/irv.12564. Epub 2018 May 6.

Abstract

BACKGROUND

In temperate zones, all-cause mortality exhibits a marked seasonality, and influenza represents a major cause of winter excess mortality. We present a statistical model, FluMOMO, which estimate influenza-associated mortality from all-cause mortality data and apply it to Danish data from 2010/11 to 2016/17.

METHODS

We applied a multivariable time series model with all-cause mortality as outcome, influenza activity and extreme temperatures as explanatory variables while adjusting for time trend and seasonality. Three indicators of weekly influenza activity (IA) were explored: percentage of consultations for influenza-like illness (ILI) at primary health care, national percentage of influenza-positive samples, and the product of ILI percentage and percentage of influenza-positive specimens in a given week, that is, the Goldstein index.

RESULTS

Independent of the choice of parameter to represent influenza activity, the estimated influenza-associated mortality showed similar patterns with the Goldstein index being the most conservative. Over the 7 winter seasons, the median influenza-associated mortality per 100 000 population was 17.6 (range: 0.0-36.8), 14.1 (0.3-31.6) and 8.3 (0.0-25.0) for the 3 indicators, respectively, for all ages.

CONCLUSION

The FluMOMO model fitted the Danish data well and has the potential to estimate all-cause influenza-associated mortality in near real time and could be used as a standardised method in other countries. We recommend using the Goldstein index as the influenza activity indicator in the FluMOMO model. Further work is needed to improve the interpretation of the estimated effects.

摘要

背景

在温带地区,全因死亡率表现出明显的季节性,流感是冬季超额死亡率的主要原因。我们提出了一个统计模型 FluMOMO,该模型可以根据全因死亡率数据估计与流感相关的死亡率,并将其应用于 2010/11 至 2016/17 年丹麦的数据。

方法

我们应用了一个多变量时间序列模型,以全因死亡率为结果,流感活动和极端温度为解释变量,同时调整时间趋势和季节性。探索了三种每周流感活动 (IA) 指标:初级保健中流感样疾病 (ILI) 的咨询百分比、全国流感阳性样本的百分比,以及给定周内 ILI 百分比和流感阳性样本百分比的乘积,即 Goldstein 指数。

结果

无论选择何种参数来表示流感活动,估计的与流感相关的死亡率模式相似,Goldstein 指数最为保守。在 7 个冬季季节中,每 10 万人中与流感相关的死亡率中位数分别为 17.6(范围:0.0-36.8)、14.1(0.3-31.6)和 8.3(0.0-25.0),适用于所有年龄组。

结论

FluMOMO 模型很好地拟合了丹麦数据,具有实时估计全因流感相关死亡率的潜力,并可在其他国家用作标准化方法。我们建议在 FluMOMO 模型中使用 Goldstein 指数作为流感活动指标。需要进一步的工作来改善对估计效果的解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验