Suppr超能文献

麻省理工学院:从与宿主状态相关的微生物组时间序列数据中推断特征。

MITRE: inferring features from microbiota time-series data linked to host status.

机构信息

Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, USA.

Present address: Kintai Therapeutics, Inc., 26 Landsdowne Street Suite 450, Cambridge, MA, 02139, USA.

出版信息

Genome Biol. 2019 Sep 2;20(1):186. doi: 10.1186/s13059-019-1788-y.

Abstract

Longitudinal studies are crucial for discovering causal relationships between the microbiome and human disease. We present MITRE, the Microbiome Interpretable Temporal Rule Engine, a supervised machine learning method for microbiome time-series analysis that infers human-interpretable rules linking changes in abundance of clades of microbes over time windows to binary descriptions of host status, such as the presence/absence of disease. We validate MITRE's performance on semi-synthetic data and five real datasets. MITRE performs on par or outperforms conventional difficult-to-interpret machine learning approaches, providing a powerful new tool enabling the discovery of biologically interpretable relationships between microbiome and human host ( https://github.com/gerberlab/mitre/ ).

摘要

纵向研究对于发现微生物组与人类疾病之间的因果关系至关重要。我们提出了 MITRE,即微生物组可解释时间规则引擎,这是一种用于微生物组时间序列分析的监督机器学习方法,它推断出将微生物类群的丰度随时间窗口的变化与宿主状态的二进制描述(例如疾病的存在/不存在)联系起来的人类可解释规则。我们在半合成数据和五个真实数据集上验证了 MITRE 的性能。MITRE 的表现与传统的难以解释的机器学习方法相当或更好,提供了一个强大的新工具,能够发现微生物组与人类宿主之间具有生物学可解释性的关系(https://github.com/gerberlab/mitre/)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5d1/6721208/7c5771e18934/13059_2019_1788_Fig3_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验