Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, USA.
Present address: Kintai Therapeutics, Inc., 26 Landsdowne Street Suite 450, Cambridge, MA, 02139, USA.
Genome Biol. 2019 Sep 2;20(1):186. doi: 10.1186/s13059-019-1788-y.
Longitudinal studies are crucial for discovering causal relationships between the microbiome and human disease. We present MITRE, the Microbiome Interpretable Temporal Rule Engine, a supervised machine learning method for microbiome time-series analysis that infers human-interpretable rules linking changes in abundance of clades of microbes over time windows to binary descriptions of host status, such as the presence/absence of disease. We validate MITRE's performance on semi-synthetic data and five real datasets. MITRE performs on par or outperforms conventional difficult-to-interpret machine learning approaches, providing a powerful new tool enabling the discovery of biologically interpretable relationships between microbiome and human host ( https://github.com/gerberlab/mitre/ ).
纵向研究对于发现微生物组与人类疾病之间的因果关系至关重要。我们提出了 MITRE,即微生物组可解释时间规则引擎,这是一种用于微生物组时间序列分析的监督机器学习方法,它推断出将微生物类群的丰度随时间窗口的变化与宿主状态的二进制描述(例如疾病的存在/不存在)联系起来的人类可解释规则。我们在半合成数据和五个真实数据集上验证了 MITRE 的性能。MITRE 的表现与传统的难以解释的机器学习方法相当或更好,提供了一个强大的新工具,能够发现微生物组与人类宿主之间具有生物学可解释性的关系(https://github.com/gerberlab/mitre/)。