Wu Lian-Ao, Segal Dvira
Department of Theoretical Physics and History of Science, The Basque Country University (EHU/UPV), PO Box 644, 48080, Bilbao, Spain.
Ikerbasque, Basque Foundation for Science, 48011, Bilbao, Spain.
Sci Rep. 2021 Feb 25;11(1):4648. doi: 10.1038/s41598-021-84289-4.
We prove the existence of a unitary transformation that enables two arbitrarily given Hamiltonians in the same Hilbert space to be transformed into one another. The result is straightforward yet, for example, it lays the foundation to implementing or mimicking dynamics with the most controllable Hamiltonian. As a promising application, this existence theorem allows for a rapidly evolving realization of adiabatic quantum computation by transforming a Hamiltonian where dynamics is in the adiabatic regime into a rapidly evolving one. We illustrate the theorem with examples.
我们证明了存在一种酉变换,它能使同一希尔伯特空间中任意给定的两个哈密顿量相互转换。该结果很直接,但例如,它为用最可控的哈密顿量实现或模拟动力学奠定了基础。作为一个有前景的应用,这个存在性定理允许通过将动力学处于绝热区域的哈密顿量转换为快速演化的哈密顿量,来快速实现绝热量子计算。我们用例子来说明该定理。