Suppr超能文献

用于神经形态计算的模拟忆阻器件中的软束缚行为的证据。

Evidence of soft bound behaviour in analogue memristive devices for neuromorphic computing.

机构信息

Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864, Agrate Brianza, (MB), Italy.

出版信息

Sci Rep. 2018 May 8;8(1):7178. doi: 10.1038/s41598-018-25376-x.

Abstract

The development of devices that can modulate their conductance under the application of electrical stimuli constitutes a fundamental step towards the realization of synaptic connectivity in neural networks. Optimization of synaptic functionality requires the understanding of the analogue conductance update under different programming conditions. Moreover, properties of physical devices such as bounded conductance values and state-dependent modulation should be considered as they affect storage capacity and performance of the network. This work provides a study of the conductance dynamics produced by identical pulses as a function of the programming parameters in an HfO memristive device. The application of a phenomenological model that considers a soft approach to the conductance boundaries allows the identification of different operation regimes and to quantify conductance modulation in the analogue region. Device non-linear switching kinetics is recognized as the physical origin of the transition between different dynamics and motivates the crucial trade-off between degree of analog modulation and memory window. Different kinetics for the processes of conductance increase and decrease account for device programming asymmetry. The identification of programming trade-off together with an evaluation of device variations provide a guideline for the optimization of the analogue programming in view of hardware implementation of neural networks.

摘要

在电刺激作用下能够调节其电导的器件的发展,是实现神经网络中突触连接的基本步骤。优化突触功能需要理解在不同编程条件下的模拟电导更新。此外,物理器件的特性,如有限的电导值和状态相关的调制,应被视为它们影响网络的存储容量和性能。这项工作研究了在 HfO 忆阻器器件中,相同脉冲产生的电导动力学作为编程参数的函数。应用考虑到电导边界软逼近的唯象模型,可以识别不同的工作模式,并在模拟区域量化电导调制。器件非线性开关动力学被认为是不同动力学之间转换的物理起源,并促使模拟调制程度和存储窗口之间的关键权衡。电导增加和减少过程的不同动力学解释了器件编程的不对称性。编程权衡的确定以及器件变化的评估为优化神经网络硬件实现中的模拟编程提供了指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f298/5940832/8ecd82384c79/41598_2018_25376_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验