Suppr超能文献

基于带有注意力门控的两阶段3D ResUNet的前纵隔病变分割与肺分割

Anterior Mediastinal Lesion Segmentation Based on Two-Stage 3D ResUNet With Attention Gates and Lung Segmentation.

作者信息

Huang Su, Han Xiaowei, Fan Jingfan, Chen Jing, Du Lei, Gao Wenwen, Liu Bing, Chen Yue, Liu Xiuxiu, Wang Yige, Ai Danni, Ma Guolin, Yang Jian

机构信息

Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, China.

Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.

出版信息

Front Oncol. 2021 Feb 8;10:618357. doi: 10.3389/fonc.2020.618357. eCollection 2020.

Abstract

OBJECTIVES

Anterior mediastinal disease is a common disease in the chest. Computed tomography (CT), as an important imaging technology, is widely used in the diagnosis of mediastinal diseases. Doctors find it difficult to distinguish lesions in CT images because of image artifact, intensity inhomogeneity, and their similarity with other tissues. Direct segmentation of lesions can provide doctors a method to better subtract the features of the lesions, thereby improving the accuracy of diagnosis.

METHOD

As the trend of image processing technology, deep learning is more accurate in image segmentation than traditional methods. We employ a two-stage 3D ResUNet network combined with lung segmentation to segment CT images. Given that the mediastinum is between the two lungs, the original image is clipped through the lung mask to remove some noises that may affect the segmentation of the lesion. To capture the feature of the lesions, we design a two-stage network structure. In the first stage, the features of the lesion are learned from the low-resolution downsampled image, and the segmentation results under a rough scale are obtained. The results are concatenated with the original image and encoded into the second stage to capture more accurate segmentation information from the image. In addition, attention gates are introduced in the upsampling of the network, and these gates can focus on the lesion and play a role in filtering the features. The proposed method has achieved good results in the segmentation of the anterior mediastinal.

RESULTS

The proposed method was verified on 230 patients, and the anterior mediastinal lesions were well segmented. The average Dice coefficient reached 87.73%. Compared with the model without lung segmentation, the model with lung segmentation greatly improved the accuracy of lesion segmentation by approximately 9%. The addition of attention gates slightly improved the segmentation accuracy.

CONCLUSION

The proposed automatic segmentation method has achieved good results in clinical data. In clinical application, automatic segmentation of lesions can assist doctors in the diagnosis of diseases and may facilitate the automated diagnosis of illnesses in the future.

摘要

目的

前纵隔疾病是胸部常见疾病。计算机断层扫描(CT)作为一种重要的成像技术,广泛应用于纵隔疾病的诊断。由于图像伪影、强度不均匀以及与其他组织的相似性,医生在CT图像中难以区分病变。病变的直接分割可以为医生提供一种更好地提取病变特征的方法,从而提高诊断的准确性。

方法

作为图像处理技术的发展趋势,深度学习在图像分割方面比传统方法更准确。我们采用结合肺部分割的两阶段3D ResUNet网络对CT图像进行分割。鉴于纵隔位于两肺之间,通过肺掩码裁剪原始图像以去除一些可能影响病变分割的噪声。为了捕捉病变的特征,我们设计了一种两阶段网络结构。在第一阶段,从低分辨率下采样图像中学习病变特征,并获得粗略尺度下的分割结果。将结果与原始图像连接并编码到第二阶段,以从图像中捕捉更准确的分割信息。此外,在网络的上采样中引入注意力门,这些门可以聚焦于病变并在特征过滤中发挥作用。所提出的方法在前纵隔分割中取得了良好的效果。

结果

该方法在230例患者中得到验证,前纵隔病变分割良好。平均Dice系数达到87.73%。与未进行肺部分割的模型相比,进行肺部分割的模型将病变分割的准确率大幅提高了约9%。注意力门的加入略微提高了分割准确率。

结论

所提出的自动分割方法在临床数据中取得了良好的效果。在临床应用中,病变的自动分割可以辅助医生进行疾病诊断,并可能在未来促进疾病的自动化诊断。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验