Suppr超能文献

移动身体活动规划与追踪:当前选项及未来解决方案需求简述

Mobile physical activity planning and tracking: a brief overview of current options and desiderata for future solutions.

作者信息

Kamel Boulos Maged N, Yang Stephen P

机构信息

School of Information Management, Sun Yat-sen University, Guangzhou 510006, China.

State University of New York College at Cortland, Cortland, NY, USA.

出版信息

Mhealth. 2021 Jan 20;7:13. doi: 10.21037/mhealth.2020.01.01. eCollection 2021.

Abstract

Consistent and enjoyable physical activity (PA) can be a crucial component to improving or maintaining one's overall health status. Using advanced features on smartphones (GPS, Bluetooth, motion sensing, etc.) coupled with an app or game that is able to assist mobile users to not only track location, but also to interact socially with others based in real-life (IRL), virtual reality (VR), or alternate-reality (ARG), has the potential to give health experts better tools to encourage higher compliance to protocols, rehabilitation, behaviour change and health outcomes. This paper outlines the available mHealth apps that capitalize on pervasive smartphone features coupled with sensors, and suggests which features might impact future PA patterns. The authors argue that the ultimate mobile PA planning and tracking app/platform will be the one capable of supporting both precision and accuracy health (offering truly individualized PA advice and coaching while preserving user privacy) and precision and accuracy public health (providing public health decision makers with community-level PA indicators obtained from app data aggregates of user populations).

摘要

持续且令人愉悦的体育活动(PA)可能是改善或维持个人整体健康状况的关键组成部分。利用智能手机上的先进功能(全球定位系统、蓝牙、运动感应等),再结合一款能够帮助移动用户不仅跟踪位置,还能在现实生活(IRL)、虚拟现实(VR)或增强现实(ARG)中与他人进行社交互动的应用程序或游戏,有可能为健康专家提供更好的工具,以鼓励更高程度地遵守协议、康复、行为改变和改善健康结果。本文概述了利用智能手机普遍功能及传感器的现有移动健康应用程序,并指出哪些功能可能会影响未来的体育活动模式。作者认为,最终的移动体育活动规划和跟踪应用程序/平台将是一个既能支持精准健康(在保护用户隐私的同时提供真正个性化的体育活动建议和指导)又能支持精准公共卫生(为公共卫生决策者提供从用户群体的应用程序数据汇总中获得的社区层面体育活动指标)的平台。

相似文献

4
The Development of an Arabic Weight-Loss App Akser Waznk: Qualitative Results.
JMIR Form Res. 2019 Mar 14;3(1):e11785. doi: 10.2196/11785.
5
End-user perspectives of two mHealth decision support tools: Electronic Community Case Management in Northern Malawi.
Int J Med Inform. 2021 Jan;145:104323. doi: 10.1016/j.ijmedinf.2020.104323. Epub 2020 Nov 10.
6
Social Comparison Features in Physical Activity Promotion Apps: Scoping Meta-Review.
J Med Internet Res. 2020 Mar 27;22(3):e15642. doi: 10.2196/15642.
10
Using Smartphones and Health Apps to Change and Manage Health Behaviors: A Population-Based Survey.
J Med Internet Res. 2017 Apr 5;19(4):e101. doi: 10.2196/jmir.6838.

本文引用的文献

5
Association of Step Volume and Intensity With All-Cause Mortality in Older Women.
JAMA Intern Med. 2019 Aug 1;179(8):1105-1112. doi: 10.1001/jamainternmed.2019.0899.
6
At-a-glance - Conceptualizing a framework for the surveillance of physical activity, sedentary behaviour and sleep in Canada.
Health Promot Chronic Dis Prev Can. 2019 May;39(5):201-204. doi: 10.24095/hpcdp.39.5.04.
7
The Physical Activity, Sedentary Behaviour and Sleep (PASS) Indicator Framework.
Health Promot Chronic Dis Prev Can. 2017 Aug;37(8):252-256. doi: 10.24095/hpcdp.37.8.04.
8
Environmental/lifestyle factors in the pathogenesis and prevention of type 2 diabetes.
BMC Med. 2017 Jul 19;15(1):131. doi: 10.1186/s12916-017-0901-x.
9
Heritability of the affective response to exercise and its correlation to exercise behavior.
Psychol Sport Exerc. 2017 Jul;31:139-148. doi: 10.1016/j.psychsport.2016.12.001. Epub 2016 Dec 5.
10
It is time to bust the myth of physical inactivity and obesity: you cannot outrun a bad diet.
Br J Sports Med. 2015 Aug;49(15):967-8. doi: 10.1136/bjsports-2015-094911. Epub 2015 Apr 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验