Suppr超能文献

优化运动负荷以预防跑者的骨骼应激情形。

Preventing Bone Stress Injuries in Runners with Optimal Workload.

机构信息

Department of Physical Therapy, School of Health & Human Sciences, Indiana University, 1140 W. Michigan St., CF-124, Indianapolis, IN, 46202, USA.

Indiana Center for Musculoskeletal Health, Indiana University, Indianapolis, IN, USA.

出版信息

Curr Osteoporos Rep. 2021 Jun;19(3):298-307. doi: 10.1007/s11914-021-00666-y. Epub 2021 Feb 26.

Abstract

Bone stress injuries (BSIs) occur at inopportune times to invariably interrupt training. All BSIs in runners occur due to an "error" in workload wherein the interaction between the number and magnitude of bone tissue loading cycles exceeds the ability of the tissue to resist the repetitive loads. There is not a single optimal bone workload, rather a range which is influenced by the prevailing scenario. In prepubertal athletes, optimal bone workload consists of low-repetitions of fast, high-magnitude, multidirectional loads introduced a few times per day to induce bone adaptation. Premature sports specialization should be avoided so as to develop a robust skeleton that is structurally optimized to withstand multidirectional loading. In the mature skeleton, optimal workload enables gains in running performance but minimizes bone damage accumulation by sensibly progressing training, particularly training intensity. When indicated (e.g., following repeated BSIs), attempts to reduce bone loading magnitude should be considered, such as increasing running cadence. Determining the optimal bone workload for an individual athlete to prevent and manage BSIs requires consistent monitoring. In the future, it may be possible to clinically determine bone loads at the tissue level to facilitate workload progressions and prescriptions.

摘要

骨应力性损伤(BSI)总是在不合时宜的时候发生,从而不可避免地打断训练。所有跑步者的 BSI 都是由于“错误”的工作量引起的,即在骨组织负荷的数量和幅度的相互作用超过组织抵抗重复负荷的能力时发生。不存在单一的最佳骨工作量,而是一个受当前情况影响的范围。在青春期前的运动员中,最佳的骨工作量包括每天几次低重复、高幅度、多方向的负荷,以诱导骨适应。应避免过早的专项运动,以便发展出一个强壮的骨骼,使其在结构上优化以承受多方向的负荷。在成熟的骨骼中,最佳的工作量可以提高跑步表现,但通过合理地增加训练,特别是训练强度,最大限度地减少骨损伤的积累。当出现(例如,反复发生 BSI 后)时,应考虑降低骨负荷幅度的尝试,例如增加跑步步频。确定个体运动员预防和管理 BSI 的最佳骨工作量需要持续监测。在未来,有可能在组织水平上临床确定骨负荷,以促进工作量的进展和规定。

相似文献

1
Preventing Bone Stress Injuries in Runners with Optimal Workload.
Curr Osteoporos Rep. 2021 Jun;19(3):298-307. doi: 10.1007/s11914-021-00666-y. Epub 2021 Feb 26.
2
Management and prevention of bone stress injuries in long-distance runners.
J Orthop Sports Phys Ther. 2014 Oct;44(10):749-65. doi: 10.2519/jospt.2014.5334. Epub 2014 Aug 7.
3
Optimal Load for Managing Low-Risk Tibial and Metatarsal Bone Stress Injuries in Runners: The Science Behind the Clinical Reasoning.
J Orthop Sports Phys Ther. 2021 Jul;51(7):322-330. doi: 10.2519/jospt.2021.9982. Epub 2021 May 7.
5
Computer simulation of the effects of shoe cushioning on internal and external loading during running impacts.
Comput Methods Biomech Biomed Engin. 2009 Aug;12(4):481-90. doi: 10.1080/10255840802695437.
6
Effects of load carriage on biomechanical variables associated with tibial stress fractures in running.
Gait Posture. 2020 Mar;77:190-194. doi: 10.1016/j.gaitpost.2020.01.009. Epub 2020 Jan 28.
7
Stress fractures and knee injuries in runners.
Phys Med Rehabil Clin N Am. 2005 Aug;16(3):749-77. doi: 10.1016/j.pmr.2005.02.008.
8
Biomechanical Basis of Predicting and Preventing Lower Limb Stress Fractures During Arduous Training.
Curr Osteoporos Rep. 2021 Jun;19(3):308-317. doi: 10.1007/s11914-021-00671-1. Epub 2021 Feb 26.
9
Peak and Per-Step Tibial Bone Stress During Walking and Running in Female and Male Recreational Runners.
Am J Sports Med. 2021 Jul;49(8):2227-2237. doi: 10.1177/03635465211014854. Epub 2021 Jun 2.
10
Bone Stress Injuries in Runners.
Phys Med Rehabil Clin N Am. 2016 Feb;27(1):139-49. doi: 10.1016/j.pmr.2015.08.008.

引用本文的文献

1
Profile of para athletes and characterization of sports injuries during the 2023 Paralympic School Games.
Int Biomech. 2025 Dec;12(1):7-17. doi: 10.1080/23335432.2025.2531944. Epub 2025 Jul 16.
2
Factors associated with bone health in long distance runners: a cross-sectional study.
Osteoporos Int. 2025 Jun 27. doi: 10.1007/s00198-025-07590-2.
3
Stress fracture risk factors in soccer players: A systematic review.
Ann Med Surg (Lond). 2025 Apr 2;87(6):3736-3747. doi: 10.1097/MS9.0000000000003136. eCollection 2025 Jun.
4
Running-Centred Injury Prevention Support: A Scoping Review on Current Injury Risk Reduction Practices for Runners.
Transl Sports Med. 2025 Feb 25;2025:3007544. doi: 10.1155/tsm2/3007544. eCollection 2025.
5
Is There a Role of Photoacoustic Imaging in Sports Medicine: Evidence Today.
Orthop Surg. 2025 Jun;17(6):1589-1603. doi: 10.1111/os.70031. Epub 2025 Mar 25.
7
Effect of acute performance fatigue on tibial bone strain during basketball maneuvers.
Bone. 2025 Apr;193:117417. doi: 10.1016/j.bone.2025.117417. Epub 2025 Jan 30.
9
From Tissue to System: What Constitutes an Appropriate Response to Loading?
Sports Med. 2025 Jan;55(1):17-35. doi: 10.1007/s40279-024-02126-w. Epub 2024 Nov 11.
10
Criteria and Guidelines for Returning to Running Following a Tibial Bone Stress Injury: A Scoping Review.
Sports Med. 2024 Sep;54(9):2247-2265. doi: 10.1007/s40279-024-02051-y. Epub 2024 Aug 14.

本文引用的文献

1
Prevalence of Female Athlete Triad Risk Factors and Iron Supplementation Among High School Distance Runners: Results From a Triad Risk Screening Tool.
Orthop J Sports Med. 2020 Oct 27;8(10):2325967120959725. doi: 10.1177/2325967120959725. eCollection 2020 Oct.
2
Sport Specialization and Low Bone Mineral Density in Female High School Distance Runners.
J Athl Train. 2020 Dec 1;55(12):1239-1246. doi: 10.4085/1062-6050-0547.19.
3
Combining wearable sensor signals, machine learning and biomechanics to estimate tibial bone force and damage during running.
Hum Mov Sci. 2020 Dec;74:102690. doi: 10.1016/j.humov.2020.102690. Epub 2020 Oct 22.
4
Differences in the principal strain angles during activities performed on natural hilly terrain versus engineered surfaces.
Clin Biomech (Bristol). 2020 Dec;80:105146. doi: 10.1016/j.clinbiomech.2020.105146. Epub 2020 Aug 16.
5
Association between intracortical microarchitecture and the compressive fatigue life of human bone: A pilot study.
Bone Rep. 2020 Mar 5;12:100254. doi: 10.1016/j.bonr.2020.100254. eCollection 2020 Jun.
6
Use of Wearables: Tracking and Retraining in Endurance Runners.
Curr Sports Med Rep. 2019 Dec;18(12):437-444. doi: 10.1249/JSR.0000000000000667.
9
Estimating Tibial Stress throughout the Duration of a Treadmill Run.
Med Sci Sports Exerc. 2019 Nov;51(11):2257-2264. doi: 10.1249/MSS.0000000000002039.
10
Step length and grade effects on energy absorption and impact attenuation in running.
Eur J Sport Sci. 2020 Jul;20(6):756-766. doi: 10.1080/17461391.2019.1664639. Epub 2019 Sep 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验