Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon, 16678, Republic of Korea.
Small. 2021 Dec;17(52):e2102792. doi: 10.1002/smll.202102792. Epub 2021 Oct 11.
Non-toxic InP-based nanocrystals have been developed for promising candidates for commercial optoelectronic applications and they still require further improvement on photophysical properties, compared to Cd-based quantum dots (QDs), for better device efficiency and long-term stability. It is, therefore, essential to understand the precise mechanism of carrier trapping even in the state-of-the-art InP-based QD with near-unity luminescence. Here, it is shown that using time-resolved spectroscopic measurements of systematically size-controlled InP/ZnSe/ZnS core/shell/shell QDs with the quantum yield close to one, carrier trapping decreases with increasing the energy difference between band-edge and trap states, indicating that the process follows the energy gap law, well known in molecular photochemistry for nonradiative internal conversion between two electronic states. Similar to the molecular view of the energy gap law, it is found that the energy gap between the band-edge and trap states is closely associated with ZnSe phonons that assist carrier trapping into defects in highly luminescent InP/ZnSe/ZnS QDs. These findings represent a striking departure from the generally accepted view of carrier trapping mechanism in QDs in the Marcus normal region, providing a step forward understanding how excitons in nanocrystals interact with traps, and offering valuable guidance for making highly efficient and stable InP-based QDs.
已开发出无毒的基于 InP 的纳米晶体,它们是商业光电应用的有前途的候选者,但与基于 Cd 的量子点 (QDs) 相比,它们的光物理性质仍需要进一步改善,以提高器件效率和长期稳定性。因此,了解载流子俘获的确切机制非常重要,即使对于具有近全荧光的最先进的基于 InP 的 QD 也是如此。在这里,通过对具有接近 1 的量子产率的系统地控制尺寸的 InP/ZnSe/ZnS 核/壳/壳 QD 的时间分辨光谱测量表明,随着带边和陷阱态之间的能量差的增加,载流子俘获减少,表明该过程遵循能量隙律,该定律在分子光化学中众所周知,用于两个电子态之间的非辐射内转换。与分子观点的能量隙律相似,发现带边和陷阱态之间的能量隙与 ZnSe 声子密切相关,ZnSe 声子有助于将载流子俘获到高度发光的 InP/ZnSe/ZnS QD 中的缺陷中。这些发现与在马库斯正常区域中 QD 中普遍接受的载流子俘获机制观点明显不同,为了解纳米晶体中的激子与陷阱的相互作用提供了一个新的视角,并为制造高效和稳定的基于 InP 的 QD 提供了有价值的指导。