Park Jumi, Won Yu-Ho, Han Yongseok, Kim Hyun-Mi, Jang Eunjoo, Kim Dongho
Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea.
Small. 2022 Feb;18(8):e2105492. doi: 10.1002/smll.202105492. Epub 2021 Dec 9.
Isotropic InP/ZnSe/ZnS quantum dots (QDs) are prepared at a high reaction temperature, which facilitates ZnSe shell growth on random facets of the InP core. Fast crystal growth enables stacking faults elimination, which induces anisotropic growth, and as a result, improves the photoluminescence (PL) quantum yield by nearly 20%. Herein, the effect of the QD morphology on photophysical properties is investigated by observing the PL blinking and ultrafast charge carrier dynamics. It is found that hot hole trapping is considerably suppressed in isotropic InP QDs, indicating that the stacking faults in the anisotropic InP/ZnSe structures act as defects for luminescence. These results highlight the importance of understanding the correlation between QD shapes and hot carrier dynamics, and present a way to design highly luminescent QDs for further promising display applications.
各向同性的InP/ZnSe/ZnS量子点(QDs)是在高温反应条件下制备的,这有利于在InP核的随机晶面上生长ZnSe壳层。快速的晶体生长能够消除堆垛层错,从而诱导各向异性生长,结果使光致发光(PL)量子产率提高了近20%。在此,通过观察PL闪烁和超快电荷载流子动力学来研究量子点形态对光物理性质的影响。研究发现,在各向同性的InP量子点中,热空穴俘获受到显著抑制,这表明各向异性的InP/ZnSe结构中的堆垛层错充当了发光缺陷。这些结果突出了理解量子点形状与热载流子动力学之间相关性的重要性,并为设计用于未来有前景的显示应用的高发光量子点提供了一种方法。