Suppr超能文献

机器学习模型的开发与验证:基于电子健康记录数据预测白内障手术后的视力

Development and Validation of Machine Learning Models: Electronic Health Record Data To Predict Visual Acuity After Cataract Surgery.

机构信息

Division of Research, Kaiser Permanente Northern California, Oakland, CA.

Departments of Ophthalmology and Quality, Kaiser Permanente, Walnut Creek, CA.

出版信息

Perm J. 2020 Dec;25:1. doi: 10.7812/TPP/20.188.

Abstract

BACKGROUND

To develop predictive models of final corrected distance visual acuity (CDVA) following cataract surgery using machine learning algorithms and electronic health record data.

METHODS

In this predictive modeling study we used decision tree, random forest, and gradient boosting. We included the first surgical eye of 64,768 members of Kaiser Permanente Northern California who underwent cataract surgery from June 1, 2010 through May 31, 2015. We measured discrimination and calibration of machine learning models for predicting postoperative CDVA 20/50 or worse vs 20/40 or better.

RESULTS

The training set included 51,712 patients, and the validation set included 13,056 patients. We compared 3 machine learning models and found that the gradient boosting model provided the best discrimination ability for CDVA. The most important variables for predicting final CDVA 20/50 or worse were preoperative CDVA, age, and age-related macular degeneration, which together accounted for 41% of the gain in optimization of the gradient boosting model. Other important variables in the model included dispensed glaucoma medication, epiretinal membrane, cornea disorder, cataract surgery operating time, surgeon experience, and census block neighborhood characteristics (household income, family income, family poverty, college education, and home residence by owner).

CONCLUSION

For predicting CDVA after cataract surgery, gradient boosting had the best ability to discriminate patients with postoperative CDVA 20/50 or worse from patients with postoperative CDVA 20/40 or better. Machine learning has the potential to improve prognosis and can improve patient information when making decisions to undergo cataract surgery.

摘要

背景

使用机器学习算法和电子健康记录数据为白内障手术后的最终矫正视力(CDVA)开发预测模型。

方法

在这项预测模型研究中,我们使用了决策树、随机森林和梯度提升。我们纳入了 2010 年 6 月 1 日至 2015 年 5 月 31 日期间在 Kaiser Permanente Northern California 接受白内障手术的 64768 名患者的第一只手术眼。我们衡量了机器学习模型预测术后 CDVA 20/50 或更差与 20/40 或更好的区分度和校准度。

结果

训练集包括 51712 例患者,验证集包括 13056 例患者。我们比较了 3 种机器学习模型,发现梯度提升模型在预测 CDVA 方面具有最佳的区分能力。预测最终 CDVA 20/50 或更差的最重要变量是术前 CDVA、年龄和年龄相关性黄斑变性,它们共同占梯度提升模型优化增益的 41%。模型中的其他重要变量包括开处青光眼药物、视网膜前膜、角膜疾病、白内障手术操作时间、外科医生经验和普查街区邻里特征(家庭收入、家庭收入、家庭贫困、大学教育和房主住所)。

结论

对于预测白内障手术后的 CDVA,梯度提升在区分术后 CDVA 20/50 或更差与术后 CDVA 20/40 或更好的患者方面具有最佳的区分能力。机器学习有潜力改善预后,并在决定接受白内障手术时可以改善患者信息。

相似文献

2
Visual outcomes after cataract surgery in patients with type 2 diabetes.
J Cataract Refract Surg. 2019 Apr;45(4):404-413. doi: 10.1016/j.jcrs.2018.11.002. Epub 2019 Jan 9.
4
Impact of the possible prognostic factors for visual outcomes of traumatic cataract surgery.
Int Ophthalmol. 2020 Nov;40(11):3163-3173. doi: 10.1007/s10792-020-01502-5. Epub 2020 Jul 10.
5
Long-term visual outcome after cataract surgery: comparison of healthy eyes and eyes with age-related macular degeneration.
J Cataract Refract Surg. 2012 Mar;38(3):409-14. doi: 10.1016/j.jcrs.2011.09.041. Epub 2012 Jan 15.
6
Study of possible predictors associated with self-assessed visual function after cataract surgery.
Ophthalmology. 2011 Sep;118(9):1732-8. doi: 10.1016/j.ophtha.2011.04.013. Epub 2011 Jun 29.
7
Prevalence of cataract surgery and postoperative visual outcome in rural central India Central India Eye and Medical Study.
J Cataract Refract Surg. 2011 Nov;37(11):1932-8. doi: 10.1016/j.jcrs.2011.08.020. Epub 2011 Sep 10.
8
Visual outcomes after cataract surgery: topical nonsteroidal anti-inflammatory drug prophylaxis compared with prednisolone.
J Cataract Refract Surg. 2021 Jul 1;47(7):870-877. doi: 10.1097/j.jcrs.0000000000000542.
10
Intraoperative difficulties, complications and self-assessed visual function in cataract surgery.
Acta Ophthalmol. 2018 Sep;96(6):592-599. doi: 10.1111/aos.13757. Epub 2018 Mar 25.

引用本文的文献

2
Machine Learning and Vision: Advancing the Frontiers of Diabetic Cataract Management.
Cureus. 2024 Aug 10;16(8):e66600. doi: 10.7759/cureus.66600. eCollection 2024 Aug.
4
Visual Acuity: Assessment of Data Quality and Usability in an Electronic Health Record System.
Ophthalmol Sci. 2022 Sep 6;3(1):100215. doi: 10.1016/j.xops.2022.100215. eCollection 2023 Mar.
5
Looking for low vision: Predicting visual prognosis by fusing structured and free-text data from electronic health records.
Int J Med Inform. 2022 Mar;159:104678. doi: 10.1016/j.ijmedinf.2021.104678. Epub 2021 Dec 30.

本文引用的文献

1
Preoperative Vision and Surgeon Volume as Predictors of Visual Outcomes after Cataract Surgery.
Ophthalmology. 2019 Mar;126(3):355-361. doi: 10.1016/j.ophtha.2018.10.030. Epub 2018 Oct 25.
2
Visual outcomes after cataract surgery in patients with type 2 diabetes.
J Cataract Refract Surg. 2019 Apr;45(4):404-413. doi: 10.1016/j.jcrs.2018.11.002. Epub 2019 Jan 9.
3
Artificial intelligence and deep learning in ophthalmology.
Br J Ophthalmol. 2019 Feb;103(2):167-175. doi: 10.1136/bjophthalmol-2018-313173. Epub 2018 Oct 25.
4
Application of artificial intelligence in ophthalmology.
Int J Ophthalmol. 2018 Sep 18;11(9):1555-1561. doi: 10.18240/ijo.2018.09.21. eCollection 2018.
5
Current state and future prospects of artificial intelligence in ophthalmology: a review.
Clin Exp Ophthalmol. 2019 Jan;47(1):128-139. doi: 10.1111/ceo.13381. Epub 2018 Sep 30.
6
Predicting Visual Acuity by Using Machine Learning in Patients Treated for Neovascular Age-Related Macular Degeneration.
Ophthalmology. 2018 Jul;125(7):1028-1036. doi: 10.1016/j.ophtha.2017.12.034. Epub 2018 Feb 14.
7
Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis.
Lancet Glob Health. 2017 Dec;5(12):e1221-e1234. doi: 10.1016/S2214-109X(17)30393-5. Epub 2017 Oct 11.
8
Natural language processing to ascertain two key variables from operative reports in ophthalmology.
Pharmacoepidemiol Drug Saf. 2017 Apr;26(4):378-385. doi: 10.1002/pds.4149. Epub 2017 Jan 3.
10
Evaluating Discrimination of Risk Prediction Models: The C Statistic.
JAMA. 2015 Sep 8;314(10):1063-4. doi: 10.1001/jama.2015.11082.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验