Division of Research, Kaiser Permanente Northern California, Oakland, CA.
Departments of Ophthalmology and Quality, Kaiser Permanente, Walnut Creek, CA.
Perm J. 2020 Dec;25:1. doi: 10.7812/TPP/20.188.
To develop predictive models of final corrected distance visual acuity (CDVA) following cataract surgery using machine learning algorithms and electronic health record data.
In this predictive modeling study we used decision tree, random forest, and gradient boosting. We included the first surgical eye of 64,768 members of Kaiser Permanente Northern California who underwent cataract surgery from June 1, 2010 through May 31, 2015. We measured discrimination and calibration of machine learning models for predicting postoperative CDVA 20/50 or worse vs 20/40 or better.
The training set included 51,712 patients, and the validation set included 13,056 patients. We compared 3 machine learning models and found that the gradient boosting model provided the best discrimination ability for CDVA. The most important variables for predicting final CDVA 20/50 or worse were preoperative CDVA, age, and age-related macular degeneration, which together accounted for 41% of the gain in optimization of the gradient boosting model. Other important variables in the model included dispensed glaucoma medication, epiretinal membrane, cornea disorder, cataract surgery operating time, surgeon experience, and census block neighborhood characteristics (household income, family income, family poverty, college education, and home residence by owner).
For predicting CDVA after cataract surgery, gradient boosting had the best ability to discriminate patients with postoperative CDVA 20/50 or worse from patients with postoperative CDVA 20/40 or better. Machine learning has the potential to improve prognosis and can improve patient information when making decisions to undergo cataract surgery.
使用机器学习算法和电子健康记录数据为白内障手术后的最终矫正视力(CDVA)开发预测模型。
在这项预测模型研究中,我们使用了决策树、随机森林和梯度提升。我们纳入了 2010 年 6 月 1 日至 2015 年 5 月 31 日期间在 Kaiser Permanente Northern California 接受白内障手术的 64768 名患者的第一只手术眼。我们衡量了机器学习模型预测术后 CDVA 20/50 或更差与 20/40 或更好的区分度和校准度。
训练集包括 51712 例患者,验证集包括 13056 例患者。我们比较了 3 种机器学习模型,发现梯度提升模型在预测 CDVA 方面具有最佳的区分能力。预测最终 CDVA 20/50 或更差的最重要变量是术前 CDVA、年龄和年龄相关性黄斑变性,它们共同占梯度提升模型优化增益的 41%。模型中的其他重要变量包括开处青光眼药物、视网膜前膜、角膜疾病、白内障手术操作时间、外科医生经验和普查街区邻里特征(家庭收入、家庭收入、家庭贫困、大学教育和房主住所)。
对于预测白内障手术后的 CDVA,梯度提升在区分术后 CDVA 20/50 或更差与术后 CDVA 20/40 或更好的患者方面具有最佳的区分能力。机器学习有潜力改善预后,并在决定接受白内障手术时可以改善患者信息。