Brosey Chris A, Houl Jerry H, Katsonis Panagiotis, Balapiti-Modarage Lakshitha P F, Bommagani Shobanbabu, Arvai Andy, Moiani Davide, Bacolla Albino, Link Todd, Warden Leslie S, Lichtarge Olivier, Jones Darin E, Ahmed Zamal, Tainer John A
Department of Molecular and Cellular Oncology, M. D. Anderson Cancer Center, Houston, TX, 77030, USA.
Department of Molecular and Cellular Oncology, M. D. Anderson Cancer Center, Houston, TX, 77030, USA.
Prog Biophys Mol Biol. 2021 Aug;163:171-186. doi: 10.1016/j.pbiomolbio.2021.02.002. Epub 2021 Feb 23.
Arrival of the novel SARS-CoV-2 has launched a worldwide effort to identify both pre-approved and novel therapeutics targeting the viral proteome, highlighting the urgent need for efficient drug discovery strategies. Even with effective vaccines, infection is possible, and at-risk populations would benefit from effective drug compounds that reduce the lethality and lasting damage of COVID-19 infection. The CoV-2 MacroD-like macrodomain (Mac1) is implicated in viral pathogenicity by disrupting host innate immunity through its mono (ADP-ribosyl) hydrolase activity, making it a prime target for antiviral therapy. We therefore solved the structure of CoV-2 Mac1 from non-structural protein 3 (Nsp3) and applied structural and sequence-based genetic tracing, including newly determined A. pompejana MacroD2 and GDAP2 amino acid sequences, to compare and contrast CoV-2 Mac1 with the functionally related human DNA-damage signaling factor poly (ADP-ribose) glycohydrolase (PARG). Previously, identified targetable features of the PARG active site allowed us to develop a pharmacologically useful PARG inhibitor (PARGi). Here, we developed a focused chemical library and determined 6 novel PARGi X-ray crystal structures for comparative analysis. We applied this knowledge to discovery of CoV-2 Mac1 inhibitors by combining computation and structural analysis to identify PARGi fragments with potential to bind the distal-ribose and adenosyl pockets of the CoV-2 Mac1 active site. Scaffold development of these PARGi fragments has yielded two novel compounds, PARG-345 and PARG-329, that crystallize within the Mac1 active site, providing critical structure-activity data and a pathway for inhibitor optimization. The reported structural findings demonstrate ways to harness our PARGi synthesis and characterization pipeline to develop CoV-2 Mac1 inhibitors targeting the ADP-ribose active site. Together, these structural and computational analyses reveal a path for accelerating development of antiviral therapeutics from pre-existing drug optimization pipelines.
新型严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的出现促使全球致力于识别针对病毒蛋白质组的已批准和新型治疗方法,凸显了高效药物发现策略的迫切需求。即使有了有效的疫苗,感染仍有可能发生,高危人群将受益于能降低新冠病毒感染致死率和长期损害的有效药物化合物。新冠病毒2型类MacroD结构域(Mac1)通过其单(ADP-核糖基)水解酶活性破坏宿主固有免疫,从而与病毒致病性有关,使其成为抗病毒治疗的主要靶点。因此,我们解析了非结构蛋白3(Nsp3)中新冠病毒2型Mac1的结构,并应用基于结构和序列的基因追踪,包括新测定的庞贝阿氏菌MacroD2和GDAP2氨基酸序列,将新冠病毒2型Mac1与功能相关的人类DNA损伤信号因子聚(ADP-核糖)糖苷水解酶(PARG)进行比较和对比。此前,已确定的PARG活性位点的可靶向特征使我们能够开发出一种具有药理学用途的PARG抑制剂(PARGi)。在此,我们开发了一个聚焦化学文库,并确定了6种新型PARGi的X射线晶体结构用于比较分析。我们将这些知识应用于新冠病毒2型Mac1抑制剂的发现,通过结合计算和结构分析来识别有可能结合新冠病毒2型Mac1活性位点远端核糖和腺苷口袋的PARGi片段。这些PARGi片段的支架开发产生了两种新型化合物PARG-345和PARG-329,它们在Mac1活性位点内结晶,提供了关键的构效数据和抑制剂优化途径。所报道的结构研究结果展示了利用我们的PARGi合成和表征流程来开发靶向ADP-核糖活性位点的新冠病毒2型Mac1抑制剂的方法。总之,这些结构和计算分析揭示了一条从现有药物优化流程加速开发抗病毒治疗药物之路。