ICTEAM, UCLouvain, Louvain-la-Neuve, 1348, Belgium.
ICTEAM, UCLouvain, Louvain-la-Neuve, 1348, Belgium.
Comput Biol Med. 2021 Apr;131:104269. doi: 10.1016/j.compbiomed.2021.104269. Epub 2021 Feb 16.
In radiation therapy, a CT image is used to manually delineate the organs and plan the treatment. During the treatment, a cone beam CT (CBCT) is often acquired to monitor the anatomical modifications. For this purpose, automatic organ segmentation on CBCT is a crucial step. However, manual segmentations on CBCT are scarce, and models trained with CT data do not generalize well to CBCT images. We investigate adversarial networks and intensity-based data augmentation, two strategies leveraging large databases of annotated CTs to train neural networks for segmentation on CBCT. Adversarial networks consist of a 3D U-Net segmenter and a domain classifier. The proposed framework is aimed at encouraging the learning of filters producing more accurate segmentations on CBCT. Intensity-based data augmentation consists in modifying the training CT images to reduce the gap between CT and CBCT distributions. The proposed adversarial networks reach DSCs of 0.787, 0.447, and 0.660 for the bladder, rectum, and prostate respectively, which is an improvement over the DSCs of 0.749, 0.179, and 0.629 for "source only" training. Our brightness-based data augmentation reaches DSCs of 0.837, 0.701, and 0.734, which outperforms the morphons registration algorithms for the bladder (0.813) and rectum (0.653), while performing similarly on the prostate (0.731). The proposed adversarial training framework can be used for any segmentation application where training and test distributions differ. Our intensity-based data augmentation can be used for CBCT segmentation to help achieve the prescribed dose on target and lower the dose delivered to healthy organs.
在放射治疗中,使用 CT 图像手动描绘器官并规划治疗。在治疗过程中,通常会获取锥形束 CT(CBCT)以监测解剖结构的变化。为此,在 CBCT 上进行自动器官分割是至关重要的一步。然而,CBCT 上的手动分割很少,并且使用 CT 数据训练的模型不能很好地泛化到 CBCT 图像。我们研究了对抗网络和基于强度的数据增强这两种策略,这两种策略都利用了大量带注释 CT 的数据库来训练用于 CBCT 分割的神经网络。对抗网络由 3D U-Net 分割器和域分类器组成。所提出的框架旨在鼓励学习产生更准确的 CBCT 分割的滤波器。基于强度的数据增强包括修改训练 CT 图像以减少 CT 和 CBCT 分布之间的差距。所提出的对抗网络在膀胱、直肠和前列腺的 DSC 分别达到 0.787、0.447 和 0.660,这优于仅使用“源”训练的 DSC 0.749、0.179 和 0.629。我们的基于亮度的数据增强达到了 0.837、0.701 和 0.734 的 DSC,在膀胱(0.813)和直肠(0.653)方面优于形态学配准算法,而在前列腺方面表现相似(0.731)。所提出的对抗训练框架可用于训练和测试分布不同的任何分割应用。我们的基于强度的数据增强可用于 CBCT 分割,以帮助实现靶区的规定剂量,并降低对健康器官的剂量。