Suppr超能文献

深度学习技术极大地影响了蛋白质结构预测和蛋白质设计。

Deep learning techniques have significantly impacted protein structure prediction and protein design.

机构信息

Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.

Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Curr Opin Struct Biol. 2021 Jun;68:194-207. doi: 10.1016/j.sbi.2021.01.007. Epub 2021 Feb 24.

Abstract

Protein structure prediction and design can be regarded as two inverse processes governed by the same folding principle. Although progress remained stagnant over the past two decades, the recent application of deep neural networks to spatial constraint prediction and end-to-end model training has significantly improved the accuracy of protein structure prediction, largely solving the problem at the fold level for single-domain proteins. The field of protein design has also witnessed dramatic improvement, where noticeable examples have shown that information stored in neural-network models can be used to advance functional protein design. Thus, incorporation of deep learning techniques into different steps of protein folding and design approaches represents an exciting future direction and should continue to have a transformative impact on both fields.

摘要

蛋白质结构预测和设计可以被视为受相同折叠原理控制的两个相反过程。尽管在过去的二十年中进展停滞不前,但最近将深度神经网络应用于空间约束预测和端到端模型训练极大地提高了蛋白质结构预测的准确性,在很大程度上解决了单域蛋白质的折叠水平问题。蛋白质设计领域也取得了显著的进展,其中一些显著的例子表明,神经网络模型中存储的信息可以用于推进功能蛋白质设计。因此,将深度学习技术纳入蛋白质折叠和设计方法的不同步骤代表了一个令人兴奋的未来方向,应该继续对这两个领域产生变革性的影响。

相似文献

3
Protein Structure Prediction: Challenges, Advances, and the Shift of Research Paradigms.蛋白质结构预测:挑战、进展与研究范式的转变
Genomics Proteomics Bioinformatics. 2023 Oct;21(5):913-925. doi: 10.1016/j.gpb.2022.11.014. Epub 2023 Mar 30.
4
A new age in protein design empowered by deep learning.深度学习赋能的蛋白质设计新时代。
Cell Syst. 2023 Nov 15;14(11):925-939. doi: 10.1016/j.cels.2023.10.006.
7
Recent Progress of Deep Learning in Drug Discovery.深度学习在药物发现中的最新进展。
Curr Pharm Des. 2021;27(17):2088-2096. doi: 10.2174/1381612827666210129123231.
8
Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.基于超深度学习模型的蛋白质接触图从头精确预测
PLoS Comput Biol. 2017 Jan 5;13(1):e1005324. doi: 10.1371/journal.pcbi.1005324. eCollection 2017 Jan.

引用本文的文献

10
The physics-AI dialogue in drug design.药物设计中的物理与人工智能对话。
RSC Med Chem. 2025 Jan 23;16(4):1499-1515. doi: 10.1039/d4md00869c. eCollection 2025 Apr 16.

本文引用的文献

2
De novo protein design by deep network hallucination.基于深度网络幻觉的从头设计蛋白质。
Nature. 2021 Dec;600(7889):547-552. doi: 10.1038/s41586-021-04184-w. Epub 2021 Dec 1.
6
De novo design of picomolar SARS-CoV-2 miniprotein inhibitors.从头设计皮摩尔级 SARS-CoV-2 小蛋白抑制剂。
Science. 2020 Oct 23;370(6515):426-431. doi: 10.1126/science.abd9909. Epub 2020 Sep 9.
10
De novo design of protein logic gates.从头设计蛋白质逻辑门。
Science. 2020 Apr 3;368(6486):78-84. doi: 10.1126/science.aay2790.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验