Suppr超能文献

深度学习技术极大地影响了蛋白质结构预测和蛋白质设计。

Deep learning techniques have significantly impacted protein structure prediction and protein design.

机构信息

Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.

Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Curr Opin Struct Biol. 2021 Jun;68:194-207. doi: 10.1016/j.sbi.2021.01.007. Epub 2021 Feb 24.

Abstract

Protein structure prediction and design can be regarded as two inverse processes governed by the same folding principle. Although progress remained stagnant over the past two decades, the recent application of deep neural networks to spatial constraint prediction and end-to-end model training has significantly improved the accuracy of protein structure prediction, largely solving the problem at the fold level for single-domain proteins. The field of protein design has also witnessed dramatic improvement, where noticeable examples have shown that information stored in neural-network models can be used to advance functional protein design. Thus, incorporation of deep learning techniques into different steps of protein folding and design approaches represents an exciting future direction and should continue to have a transformative impact on both fields.

摘要

蛋白质结构预测和设计可以被视为受相同折叠原理控制的两个相反过程。尽管在过去的二十年中进展停滞不前,但最近将深度神经网络应用于空间约束预测和端到端模型训练极大地提高了蛋白质结构预测的准确性,在很大程度上解决了单域蛋白质的折叠水平问题。蛋白质设计领域也取得了显著的进展,其中一些显著的例子表明,神经网络模型中存储的信息可以用于推进功能蛋白质设计。因此,将深度学习技术纳入蛋白质折叠和设计方法的不同步骤代表了一个令人兴奋的未来方向,应该继续对这两个领域产生变革性的影响。

相似文献

1
Deep learning techniques have significantly impacted protein structure prediction and protein design.
Curr Opin Struct Biol. 2021 Jun;68:194-207. doi: 10.1016/j.sbi.2021.01.007. Epub 2021 Feb 24.
2
Protein tertiary structure modeling driven by deep learning and contact distance prediction in CASP13.
Proteins. 2019 Dec;87(12):1165-1178. doi: 10.1002/prot.25697. Epub 2019 Apr 25.
3
Protein Structure Prediction: Challenges, Advances, and the Shift of Research Paradigms.
Genomics Proteomics Bioinformatics. 2023 Oct;21(5):913-925. doi: 10.1016/j.gpb.2022.11.014. Epub 2023 Mar 30.
4
A new age in protein design empowered by deep learning.
Cell Syst. 2023 Nov 15;14(11):925-939. doi: 10.1016/j.cels.2023.10.006.
5
Naive Prediction of Protein Backbone Phi and Psi Dihedral Angles Using Deep Learning.
Molecules. 2023 Oct 12;28(20):7046. doi: 10.3390/molecules28207046.
6
Fast and accurate Ab Initio Protein structure prediction using deep learning potentials.
PLoS Comput Biol. 2022 Sep 16;18(9):e1010539. doi: 10.1371/journal.pcbi.1010539. eCollection 2022 Sep.
7
Recent Progress of Deep Learning in Drug Discovery.
Curr Pharm Des. 2021;27(17):2088-2096. doi: 10.2174/1381612827666210129123231.
8
Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
PLoS Comput Biol. 2017 Jan 5;13(1):e1005324. doi: 10.1371/journal.pcbi.1005324. eCollection 2017 Jan.
10
Deep-learning contact-map guided protein structure prediction in CASP13.
Proteins. 2019 Dec;87(12):1149-1164. doi: 10.1002/prot.25792. Epub 2019 Aug 14.

引用本文的文献

1
AlphaFold 3: an unprecedent opportunity for fundamental research and drug development.
Precis Clin Med. 2025 Jul 1;8(3):pbaf015. doi: 10.1093/pcmedi/pbaf015. eCollection 2025 Sep.
2
Dynamic energy conversion in protein catalysis: From brownian motion to enzymatic function.
Comput Struct Biotechnol J. 2025 Jul 30;27:3337-3369. doi: 10.1016/j.csbj.2025.07.050. eCollection 2025.
3
DivPro: diverse protein sequence design with direct structure recovery guidance.
Bioinformatics. 2025 Jul 1;41(Supplement_1):i382-i390. doi: 10.1093/bioinformatics/btaf258.
5
Multimeric protein interaction and complex prediction: Structure, dynamics and function.
Comput Struct Biotechnol J. 2025 May 16;27:1975-1997. doi: 10.1016/j.csbj.2025.05.009. eCollection 2025.
10
The physics-AI dialogue in drug design.
RSC Med Chem. 2025 Jan 23;16(4):1499-1515. doi: 10.1039/d4md00869c. eCollection 2025 Apr 16.

本文引用的文献

1
Protein sequence design with a learned potential.
Nat Commun. 2022 Feb 8;13(1):746. doi: 10.1038/s41467-022-28313-9.
2
De novo protein design by deep network hallucination.
Nature. 2021 Dec;600(7889):547-552. doi: 10.1038/s41586-021-04184-w. Epub 2021 Dec 1.
3
Deducing high-accuracy protein contact-maps from a triplet of coevolutionary matrices through deep residual convolutional networks.
PLoS Comput Biol. 2021 Mar 26;17(3):e1008865. doi: 10.1371/journal.pcbi.1008865. eCollection 2021 Mar.
4
Computational design of SARS-CoV-2 spike glycoproteins to increase immunogenicity by T cell epitope engineering.
Comput Struct Biotechnol J. 2021;19:518-529. doi: 10.1016/j.csbj.2020.12.039. Epub 2020 Dec 31.
5
'It will change everything': DeepMind's AI makes gigantic leap in solving protein structures.
Nature. 2020 Dec;588(7837):203-204. doi: 10.1038/d41586-020-03348-4.
6
De novo design of picomolar SARS-CoV-2 miniprotein inhibitors.
Science. 2020 Oct 23;370(6515):426-431. doi: 10.1126/science.abd9909. Epub 2020 Sep 9.
7
A defined structural unit enables de novo design of small-molecule-binding proteins.
Science. 2020 Sep 4;369(6508):1227-1233. doi: 10.1126/science.abb8330.
8
design of protein peptides to block association of the SARS-CoV-2 spike protein with human ACE2.
Aging (Albany NY). 2020 Jun 16;12(12):11263-11276. doi: 10.18632/aging.103416.
9
De novo protein design enables the precise induction of RSV-neutralizing antibodies.
Science. 2020 May 15;368(6492). doi: 10.1126/science.aay5051.
10
De novo design of protein logic gates.
Science. 2020 Apr 3;368(6486):78-84. doi: 10.1126/science.aay2790.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验