Zheng Wei, Wuyun Qiqige, Li Yang, Liu Quancheng, Zhou Xiaogen, Peng Chunxiang, Zhu Yiheng, Freddolino Lydia, Zhang Yang
NITFID, School of Statistics and Data Science, AAIS, LPMC and KLMDASR, Nankai University, Tianjin, China.
Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
Nat Biotechnol. 2025 May 23. doi: 10.1038/s41587-025-02654-4.
The dominant success of deep learning techniques on protein structure prediction has challenged the necessity and usefulness of traditional force field-based folding simulations. We proposed a hybrid approach, deep-learning-based iterative threading assembly refinement (D-I-TASSER), which constructs atomic-level protein structural models by integrating multisource deep learning potentials with iterative threading fragment assembly simulations. D-I-TASSER introduces a domain splitting and assembly protocol for the automated modeling of large multidomain protein structures. Benchmark tests and the most recent critical assessment of protein structure prediction, 15 experiments demonstrate that D-I-TASSER outperforms AlphaFold2 and AlphaFold3 on both single-domain and multidomain proteins. Large-scale folding experiments further show that D-I-TASSER could fold 81% of protein domains and 73% of full-chain sequences in the human proteome with results highly complementary to recently released models by AlphaFold2. These results highlight a new avenue to integrate deep learning with classical physics-based folding simulations for high-accuracy protein structure and function predictions that are usable in genome-wide applications.
深度学习技术在蛋白质结构预测方面的显著成功对传统基于力场的折叠模拟的必要性和实用性提出了挑战。我们提出了一种混合方法,即基于深度学习的迭代穿线装配优化(D-I-TASSER),它通过将多源深度学习势与迭代穿线片段装配模拟相结合来构建原子级蛋白质结构模型。D-I-TASSER引入了一种结构域拆分和装配协议,用于大型多结构域蛋白质结构的自动建模。基准测试以及蛋白质结构预测的最新关键评估(15项实验)表明,D-I-TASSER在单结构域和多结构域蛋白质上均优于AlphaFold2和AlphaFold3。大规模折叠实验进一步表明,D-I-TASSER能够折叠人类蛋白质组中81%的蛋白质结构域和73%的全链序列,其结果与AlphaFold2最近发布的模型高度互补。这些结果突出了一条将深度学习与基于经典物理学的折叠模拟相结合的新途径,用于在全基因组应用中可用的高精度蛋白质结构和功能预测。