Maksimova Elena M, Vinogradova Daria S, Osterman Ilya A, Kasatsky Pavel S, Nikonov Oleg S, Milón Pohl, Dontsova Olga A, Sergiev Petr V, Paleskava Alena, Konevega Andrey L
Petersburg Nuclear Physics Institute named by B. P. Konstantinov, NRC "Kurchatov Institute", Gatchina, Russia.
NanoTemper Technologies Rus, St. Petersburg, Russia.
Front Microbiol. 2021 Feb 12;12:618857. doi: 10.3389/fmicb.2021.618857. eCollection 2021.
Amicoumacin A (Ami) halts bacterial growth by inhibiting the ribosome during translation. The Ami binding site locates in the vicinity of the E-site codon of mRNA. However, Ami does not clash with mRNA, rather stabilizes it, which is relatively unusual and implies a unique way of translation inhibition. In this work, we performed a kinetic and thermodynamic investigation of Ami influence on the main steps of polypeptide synthesis. We show that Ami reduces the rate of the functional canonical 70S initiation complex (IC) formation by 30-fold. Additionally, our results indicate that Ami promotes the formation of erroneous 30S ICs; however, IF3 prevents them from progressing towards translation initiation. During early elongation steps, Ami does not compromise EF-Tu-dependent A-site binding or peptide bond formation. On the other hand, Ami reduces the rate of peptidyl-tRNA movement from the A to the P site and significantly decreases the amount of the ribosomes capable of polypeptide synthesis. Our data indicate that Ami progressively decreases the activity of translating ribosomes that may appear to be the main inhibitory mechanism of Ami. Indeed, the use of EF-G mutants that confer resistance to Ami (G542V, G581A, or ins544V) leads to a complete restoration of the ribosome functionality. It is possible that the changes in translocation induced by EF-G mutants compensate for the activity loss caused by Ami.
氨甲环酸A(Ami)通过在翻译过程中抑制核糖体来阻止细菌生长。Ami结合位点位于mRNA的E位点密码子附近。然而,Ami并不与mRNA发生冲突,而是使其稳定,这相对不寻常,暗示了一种独特的翻译抑制方式。在这项工作中,我们对Ami对多肽合成主要步骤的影响进行了动力学和热力学研究。我们发现Ami将功能性经典70S起始复合物(IC)的形成速率降低了30倍。此外,我们的结果表明Ami促进错误的30S IC的形成;然而,IF3可阻止它们进入翻译起始阶段。在早期延伸步骤中,Ami不会损害EF-Tu依赖的A位点结合或肽键形成。另一方面,Ami降低了肽基-tRNA从A位点移动到P位点的速率,并显著减少了能够进行多肽合成的核糖体数量。我们的数据表明,Ami逐渐降低正在翻译的核糖体的活性,这可能是Ami的主要抑制机制。事实上,使用对Ami具有抗性的EF-G突变体(G542V、G581A或ins544V)可导致核糖体功能完全恢复。EF-G突变体诱导的转位变化有可能补偿Ami导致的活性丧失。