Suppr超能文献

硅通过提高酶促和非酶促抗氧化剂以及调节圆叶葡萄(Michx.)的养分吸收来缓解缺氧胁迫。

Silicon Alleviate Hypoxia Stress by Improving Enzymatic and Non-enzymatic Antioxidants and Regulating Nutrient Uptake in Muscadine Grape ( Michx.).

作者信息

Iqbal Zafar, Sarkhosh Ali, Balal Rashad Mukhtar, Gómez Celina, Zubair Muhammad, Ilyas Noshin, Khan Naeem, Shahid Muhammad Adnan

机构信息

Central Laboratories, King Faisal University, Al-Hofuf, Saudi Arabia.

Horticultural Sciences Department, University of Florida, Gainesville, FL, United States.

出版信息

Front Plant Sci. 2021 Feb 10;11:618873. doi: 10.3389/fpls.2020.618873. eCollection 2020.

Abstract

Flooding induces low oxygen (hypoxia) stress to plants, and this scenario is mounting due to hurricanes followed by heavy rains, especially in subtropical regions. Hypoxia stress results in the reduction of green pigments, gas exchange (stomatal conductance and internal CO concentration), and photosynthetic activity in the plant leaves. In addition, hypoxia stress causes oxidative damage by accelerating lipid peroxidation due to the hyperproduction of reactive oxygen species (ROS) in leaf and root tissues. Furthermore, osmolyte accumulation and antioxidant activity increase, whereas micronutrient uptake decreases under hypoxia stress. Plant physiology and development get severely compromised by hypoxia stress. This investigation was, therefore, aimed at appraising the effects of regular silicon (Si) and Si nanoparticles (SiNPs) to mitigate hypoxia stress in muscadine ( Michx.) plants. Our results demonstrated that hypoxia stress reduced muscadine plants' growth by limiting the production of root and shoot dry biomass, whereas the root zone application of both Si and SiNP effectively mitigated oxidative and osmotic cell damage. Compared to Si, SiNP yielded better efficiency by improving the activity of enzymatic antioxidants [including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)], non-enzymatic antioxidants [ascorbic acid (AsA) and glutathione contents], and accumulation of organic osmolytes [proline and glycinebetaine (GB)]. SiNP also regulated the nutrient profile of the plants by increasing N, P, K, and Zn contents while limiting Mn and Fe concentration to a less toxic level. A negative correlation between antioxidant activities and lipid peroxidation rates was observed in SiNP-treated plants under hypoxia stress. Conclusively, SiNP-treated plants combat hypoxia more efficiently stress than conventional Si by boosting antioxidant activities, osmoprotectant accumulation, and micronutrient regulation.

摘要

洪水会给植物带来低氧(缺氧)胁迫,而且由于飓风后暴雨频发,这种情况正在加剧,尤其是在亚热带地区。缺氧胁迫会导致植物叶片中的绿色色素减少、气体交换(气孔导度和胞内二氧化碳浓度)以及光合活性降低。此外,缺氧胁迫会因叶片和根系组织中活性氧(ROS)的过量产生加速脂质过氧化,从而造成氧化损伤。此外,在缺氧胁迫下,渗透调节剂积累和抗氧化活性增加,而微量营养素的吸收减少。缺氧胁迫会严重损害植物的生理和发育。因此,本研究旨在评估定期施用硅(Si)和硅纳米颗粒(SiNPs)对减轻圆叶葡萄(Michx.)植物缺氧胁迫的影响。我们的结果表明,缺氧胁迫通过限制根和地上部干生物量的产生来抑制圆叶葡萄植株的生长,而在根区施用Si和SiNP均能有效减轻氧化和渗透细胞损伤。与Si相比,SiNP通过提高酶促抗氧化剂[包括超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)]、非酶促抗氧化剂[抗坏血酸(AsA)和谷胱甘肽含量]的活性以及有机渗透调节剂[脯氨酸和甘氨酸甜菜碱(GB)]的积累,产生了更好的效果。SiNP还通过增加N、P、K和Zn的含量,同时将Mn和Fe的浓度限制在毒性较小的水平,来调节植物的营养状况。在缺氧胁迫下,SiNP处理的植株中观察到抗氧化活性与脂质过氧化率之间呈负相关。总之,SiNP处理的植株通过增强抗氧化活性、渗透保护剂积累和微量营养素调节,比传统Si更有效地对抗缺氧胁迫。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f3c/7902783/8198e6e7b4ae/fpls-11-618873-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验