Suppr超能文献

在南亚研究人群中使用多基因和临床风险评分评估2型糖尿病风险预测

Assessing the prediction of type 2 diabetes risk using polygenic and clinical risk scores in South Asian study populations.

作者信息

Rout Madhusmita, Wander Gurpreet S, Ralhan Sarju, Singh Jai Rup, Aston Christopher E, Blackett Piers R, Chernausek Steven, Sanghera Dharambir K

机构信息

Department of Pediatrics, Section of Genetics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.

Hero DMC Heart Institute, Ludhiana, Punjab, India.

出版信息

Ther Adv Endocrinol Metab. 2023 Dec 25;14:20420188231220120. doi: 10.1177/20420188231220120. eCollection 2023.

Abstract

BACKGROUND

Genome-wide polygenic risk scores (PRS) have shown high specificity and sensitivity in predicting type 2 diabetes (T2D) risk in Europeans. However, the PRS-driven information and its clinical significance in non-Europeans are underrepresented. We examined the predictive efficacy and transferability of PRS models using variant information derived from genome-wide studies of Asian Indians (AIs) (PRS) and Europeans (PRS) using 13,974 AI individuals.

METHODS

Weighted PRS models were constructed and analyzed on 4602 individuals from the Asian Indian Diabetes Heart Study/Sikh Diabetes Study (AIDHS/SDS) as discovery/training and test/validation datasets. The results were further replicated in 9372 South Asian individuals from UK Biobank (UKBB). We also assessed the performance of each PRS model by combining data of the clinical risk score (CRS).

RESULTS

Both genetic models (PRS and PRS) successfully predicted the T2D risk. However, the PRS revealed 13.2% odds ratio (OR) 1.80 [95% confidence interval (CI) 1.63-1.97;  = 1.6 × 10] and 12.2% OR 1.38 (95% CI 1.30-1.46;  = 7.1 × 10) superior performance in AIDHS/SDS and UKBB validation sets, respectively. Comparing individuals of extreme PRS (ninth decile) with the average PRS (fifth decile), PRS showed about two-fold OR 20.73 (95% CI 10.27-41.83;  = 2.7 × 10) and 1.4-fold OR 3.19 (95% CI 2.51-4.06;  = 4.8 × 10) higher predictability to identify subgroups with higher genetic risk than the PRS. Combining PRS and CRS improved the area under the curve from 0.74 to 0.79 in PRS and 0.72 to 0.75 in PRS.

CONCLUSION

Our data suggest the need for extending genetic and clinical studies in varied ethnic groups to exploit the full clinical potential of PRS as a risk prediction tool in diverse study populations.

摘要

背景

全基因组多基因风险评分(PRS)在预测欧洲人2型糖尿病(T2D)风险方面已显示出高特异性和敏感性。然而,PRS所提供的信息及其在非欧洲人群中的临床意义尚未得到充分体现。我们使用来自亚洲印度人(AIs)(PRS)和欧洲人(PRS)全基因组研究的变异信息,对13974名亚洲印度个体进行分析,以检验PRS模型的预测效力和可转移性。

方法

构建加权PRS模型,并在来自亚洲印度糖尿病心脏研究/锡克教糖尿病研究(AIDHS/SDS)的4602名个体中进行分析,作为发现/训练数据集以及测试/验证数据集。结果在来自英国生物银行(UKBB)的9372名南亚个体中进一步得到验证。我们还通过合并临床风险评分(CRS)数据来评估每个PRS模型的性能。

结果

两种遗传模型(PRS和PRS)均成功预测了T2D风险。然而,在AIDHS/SDS和UKBB验证集中,PRS分别显示出优势,优势比(OR)提高了13.2%,达到1.80[95%置信区间(CI)1.63 - 1.97;P = 1.6×10],以及12.2%,达到1.38(95% CI 1.30 - 1.46;P = 7.1×10)。将PRS处于极端值(第九十分位数)的个体与平均PRS(第五十分位数)的个体进行比较,在识别具有较高遗传风险的亚组方面,PRS的预测能力分别高出约两倍,OR为20.73(95% CI 10.27 - 41.83;P = 2.7×10)和1.4倍,OR为3.19(95% CI 2.51 - 4.06;P = 4.8×10)。将PRS和CRS相结合,使PRS的曲线下面积从0.74提高到0.79,使PRS的曲线下面积从0.72提高到0.75。

结论

我们的数据表明,有必要在不同种族群体中扩展遗传和临床研究,以充分发挥PRS作为不同研究人群风险预测工具的全部临床潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87c0/10752110/6a688e15704d/10.1177_20420188231220120-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验