Suppr超能文献

一种基于半监督聚类的高效自动步态异常检测方法。

An Efficient Automatic Gait Anomaly Detection Method Based on Semisupervised Clustering.

作者信息

Yang Zhenlun

机构信息

School of Information Engineering, Guangzhou Panyu Polytechnic, Guangzhou 511483, China.

出版信息

Comput Intell Neurosci. 2021 Feb 15;2021:8840156. doi: 10.1155/2021/8840156. eCollection 2021.

Abstract

The aim of this work is to develop a common automatic computer method to distinguish human individuals with abnormal gait patterns from those with normal gait patterns. As long as the silhouette gait images of the subjects are obtainable, the proposed method is capable of providing online anomaly gait detection result without additional work on analyzing the gait features of the target subjects before ahead. Moreover, the proposed method does not need any parameter settings by users and can start producing detection results under the work by only collecting a very small number of gait samples, even though none of those gait samples are abnormal. Therefore, the proposed method can provide fast and simple deployment for various anomaly gait detection application scenarios. The proposed method is composed of two main modules: (1) feature extraction from gait images and (2) anomaly detection via binary classification. In the first module, a new representation of the most frequently involved area of the silhouette gait images called full gait energy image (F-GEI) is proposed. Furthermore, based on the F-GEI, a novel and simple method characterizing individual walking properties is developed to extract gait features from individual subjects. In the second module, based on the very limited prior knowledge on the target dataset, a semisupervised clustering algorithm is proposed to perform the binary classification for detecting the gait anomaly of each subject. The performance of the proposed gait anomaly detection method was evaluated on the human gaits dataset in comparison with three state-of-the-art methods. The experiment results show that the proposed method is an effective and efficient gait anomaly detection method in terms of accuracy, robustness, and computational efficiency.

摘要

这项工作的目的是开发一种通用的自动计算机方法,以区分步态模式异常的人和步态模式正常的人。只要能够获取受试者的步态轮廓图像,所提出的方法就能在无需提前对目标受试者的步态特征进行额外分析的情况下,提供在线异常步态检测结果。此外,该方法无需用户进行任何参数设置,即使所采集的步态样本均无异常,仅通过收集非常少量的步态样本即可开始工作并产生检测结果。因此,该方法可为各种异常步态检测应用场景提供快速且简便的部署。所提出的方法由两个主要模块组成:(1)从步态图像中提取特征;(2)通过二分类进行异常检测。在第一个模块中,提出了一种对步态轮廓图像中最常涉及区域的新表示,称为全步态能量图像(F-GEI)。此外,基于F-GEI,开发了一种新颖且简单的表征个体行走特性的方法,用于从个体受试者中提取步态特征。在第二个模块中,基于目标数据集非常有限的先验知识,提出了一种半监督聚类算法,用于对每个受试者的步态异常进行二分类检测。与三种最先进的方法相比,在所提出的步态异常检测方法在人体步态数据集上进行了性能评估。实验结果表明,该方法在准确性、鲁棒性和计算效率方面是一种有效且高效的步态异常检测方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/578c/7902142/945d26fbaf55/CIN2021-8840156.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验