Suppr超能文献

一项比较:使用时间序列平滑法和长短期记忆神经网络预测印度尼西亚的新冠肺炎死亡病例和感染病例

A Comparison: Prediction of Death and Infected COVID-19 Cases in Indonesia Using Time Series Smoothing and LSTM Neural Network.

作者信息

Rasjid Zulfany Erlisa, Setiawan Reina, Effendi Andy

机构信息

Computer Science Department, School of Computer Science, Bina Nusantara University, Jl. K.H. Syahdan No. 9, Jakarta 11480, Indonesia.

Information Systems Department, School of Information Systems, Bina Nusantara University, Jl. K.H. Syahdan No. 9, Jakarta 11480, Indonesia.

出版信息

Procedia Comput Sci. 2021;179:982-988. doi: 10.1016/j.procs.2021.01.102. Epub 2021 Feb 19.

Abstract

COVID-19 is a virus causing pneumonia, also known as Corona Virus Disease. The first outbreak was found in Wuhan, China, in the province of Hubei on December 2019. The objective of this paper is to predict the death and infected COVID-19 in Indonesia using Savitzky Golay Smoothing and Long Short Term Memory Neural Network model (LSTM-NN). The dataset is obtained from Humanitarian Data Exchange (HDX), containing daily information on death and infected due to COVID-19. In Indonesia, the total data collected ranges from 2 March 2020 and by 26 July 2020, with a total of 147 records. The results of these two models are compared to determine the best fitted model. The curve of LSTM-NN shows an increase in death and infected cases and the Time Series also increases, however the smoothing shows a tendency to decrease. In conclusion, LSTM-NN prediction produce better result than the Savitzky Golay Smoothing. The LSTM-NN prediction shows a distinct rise and align with the actual Time Series data.

摘要

新冠病毒病(COVID-19)是一种引发肺炎的病毒,也被称为冠状病毒病。2019年12月,中国湖北省武汉市首次发现疫情。本文旨在运用萨维茨基-戈莱平滑法和长短期记忆神经网络模型(LSTM-NN)预测印度尼西亚的新冠病毒病死亡人数和感染病例。数据集来自人道主义数据交换平台(HDX),包含新冠病毒病每日死亡和感染信息。在印度尼西亚,收集到的数据涵盖2020年3月2日至2020年7月26日,共计147条记录。对这两种模型的结果进行比较,以确定最佳拟合模型。LSTM-NN模型曲线显示死亡和感染病例呈上升趋势,时间序列也在增加,然而平滑法显示出下降趋势。总之,LSTM-NN预测结果优于萨维茨基-戈莱平滑法。LSTM-NN预测呈现出明显的上升趋势,且与实际时间序列数据相符。

相似文献

7
COVID-19 Patient Count Prediction Using LSTM.使用长短期记忆网络(LSTM)预测新冠病毒疾病(COVID-19)患者数量
IEEE Trans Comput Soc Syst. 2021 Feb 19;8(4):974-981. doi: 10.1109/TCSS.2021.3056769. eCollection 2021 Aug.
9
LSTM algorithm optimization for COVID-19 prediction model.用于新冠病毒疾病预测模型的长短期记忆算法优化
Heliyon. 2024 Feb 16;10(4):e26158. doi: 10.1016/j.heliyon.2024.e26158. eCollection 2024 Feb 29.

引用本文的文献

7
Developing an artificial neural network for detecting COVID-19 disease.开发用于检测新冠肺炎疾病的人工神经网络。
J Educ Health Promot. 2022 Jan 31;11:2. doi: 10.4103/jehp.jehp_387_21. eCollection 2022.
8
Forecasting COVID-19 new cases using deep learning methods.利用深度学习方法预测 COVID-19 新发病例。
Comput Biol Med. 2022 May;144:105342. doi: 10.1016/j.compbiomed.2022.105342. Epub 2022 Feb 23.

本文引用的文献

1
Predicting COVID-19 in China Using Hybrid AI Model.利用混合人工智能模型预测中国的 COVID-19 疫情。
IEEE Trans Cybern. 2020 Jul;50(7):2891-2904. doi: 10.1109/TCYB.2020.2990162. Epub 2020 May 8.
2
Coronavirus disease 2019 (COVID-19): A literature review.新型冠状病毒病 2019(COVID-19):文献综述。
J Infect Public Health. 2020 May;13(5):667-673. doi: 10.1016/j.jiph.2020.03.019. Epub 2020 Apr 8.
3
5
Artificial Intelligence (AI) applications for COVID-19 pandemic.用于2019冠状病毒病大流行的人工智能(AI)应用程序。
Diabetes Metab Syndr. 2020 Jul-Aug;14(4):337-339. doi: 10.1016/j.dsx.2020.04.012. Epub 2020 Apr 14.
10
Forecasting the novel coronavirus COVID-19.预测新型冠状病毒(COVID-19)。
PLoS One. 2020 Mar 31;15(3):e0231236. doi: 10.1371/journal.pone.0231236. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验