Farkas Csaba, Iclanzan David, Olteán-Péter Boróka, Vekov Géza
Mathematics and Computer Science, Sapientia Hungarian University of Transylvania, Targu Mures, Romania.
Mathematics and Computer Science, Babes-Bolyai University of Cluj-Napoca, Cluj-Napoca, Romania.
PeerJ. 2021 Feb 18;9:e10790. doi: 10.7717/peerj.10790. eCollection 2021.
Building an effective and highly usable epidemiology model presents two main challenges: finding the appropriate, realistic enough model that takes into account complex biological, social and environmental parameters and efficiently estimating the parameter values with which the model can accurately match the available outbreak data, provide useful projections. The reproduction number of the novel coronavirus (SARS-CoV-2) has been found to vary over time, potentially being influenced by a multitude of factors such as varying control strategies, changes in public awareness and reaction or, as a recent study suggests, sensitivity to temperature or humidity changes. To take into consideration these constantly evolving factors, the paper introduces a time dynamic, humidity-dependent SEIR-type extended epidemiological model with range-defined parameters. Using primarily the historical data of the outbreak from Northern and Southern Italy and with the help of stochastic global optimization algorithms, we are able to determine a model parameter estimation that provides a high-quality fit to the data. The time-dependent contact rate showed a quick drop to a value slightly below 2. Applying the model for the COVID-19 outbreak in the northern region of Italy, we obtained parameters that suggest a slower shrinkage of the contact rate to a value slightly above 4. These findings indicate that model fitting and validation, even on a limited amount of available data, can provide useful insights and projections, uncover aspects that upon improvement might help mitigate the disease spreading.
找到一个合适的、足够现实的模型,该模型要考虑到复杂的生物、社会和环境参数,并有效地估计参数值,使模型能够准确匹配现有的疫情数据,做出有用的预测。已发现新型冠状病毒(SARS-CoV-2)的繁殖数随时间变化,可能受到多种因素的影响,如不同的控制策略、公众意识和反应的变化,或者如最近一项研究所表明的,对温度或湿度变化的敏感性。为了考虑这些不断演变的因素,本文引入了一个具有范围定义参数的时间动态、湿度依赖的SEIR型扩展流行病学模型。主要使用意大利北部和南部疫情的历史数据,并借助随机全局优化算法,我们能够确定一个能很好拟合数据的模型参数估计值。随时间变化的接触率迅速下降到略低于2的值。将该模型应用于意大利北部地区的COVID-19疫情,我们得到的参数表明接触率收缩到略高于4的值的速度较慢。这些发现表明,即使基于有限的可用数据进行模型拟合和验证,也能提供有用的见解和预测,揭示那些改进后可能有助于减轻疾病传播的方面。