Suppr超能文献

基于机器学习的脑磁共振图像胶质瘤分级放射组学

Machine-Learning-Based Radiomics for Classifying Glioma Grade from Magnetic Resonance Images of the Brain.

作者信息

Kumar Anuj, Jha Ashish Kumar, Agarwal Jai Prakash, Yadav Manender, Badhe Suvarna, Sahay Ayushi, Epari Sridhar, Sahu Arpita, Bhattacharya Kajari, Chatterjee Abhishek, Ganeshan Balaji, Rangarajan Venkatesh, Moyiadi Aliasgar, Gupta Tejpal, Goda Jayant S

机构信息

Department of Radiation Oncology, Tata Memorial Centre, Homi Bhaba National Institute, Mumbai 400012, India.

Department of Nuclear Medicine, Tata Memorial Centre, Homi Bhaba National Institute, Mumbai 400012, India.

出版信息

J Pers Med. 2023 May 30;13(6):920. doi: 10.3390/jpm13060920.

Abstract

Grading of gliomas is a piece of critical information related to prognosis and survival. Classifying glioma grade by semantic radiological features is subjective, requires multiple MRI sequences, is quite complex and clinically demanding, and can very often result in erroneous radiological diagnosis. We used a radiomics approach with machine learning classifiers to determine the grade of gliomas. Eighty-three patients with histopathologically proven gliomas underwent MRI of the brain. Whenever available, immunohistochemistry was additionally used to augment the histopathological diagnosis. Segmentation was performed manually on the T2W MR sequence using the TexRad texture analysis softwareTM, Version 3.10. Forty-two radiomics features, which included first-order features and shape features, were derived and compared between high-grade and low-grade gliomas. Features were selected by recursive feature elimination using a random forest algorithm method. The classification performance of the models was measured using accuracy, precision, recall, f1 score, and area under the curve (AUC) of the receiver operating characteristic curve. A 10-fold cross-validation was adopted to separate the training and the test data. The selected features were used to build five classifier models: support vector machine, random forest, gradient boost, naive Bayes, and AdaBoost classifiers. The random forest model performed the best, achieving an AUC of 0.81, an accuracy of 0.83, f1 score of 0.88, a recall of 0.93, and a precision of 0.85 for the test cohort. The results suggest that machine-learning-based radiomics features extracted from multiparametric MRI images can provide a non-invasive method for predicting glioma grades preoperatively. In the present study, we extracted the radiomics features from a single cross-sectional image of the T2W MRI sequence and utilized these features to build a fairly robust model to classify low-grade gliomas from high-grade gliomas (grade 4 gliomas).

摘要

胶质瘤分级是与预后和生存相关的关键信息。通过语义放射学特征对胶质瘤分级具有主观性,需要多个MRI序列,过程相当复杂且对临床要求较高,并且常常会导致错误的放射学诊断。我们采用了一种基于影像组学的方法结合机器学习分类器来确定胶质瘤的分级。83例经组织病理学证实的胶质瘤患者接受了脑部MRI检查。只要可行,还会额外使用免疫组织化学来辅助组织病理学诊断。使用TexRad纹理分析软件TM 3.10版本在T2W MR序列上手动进行分割。提取了42个影像组学特征,包括一阶特征和形状特征,并在高级别和低级别胶质瘤之间进行比较。通过使用随机森林算法的递归特征消除来选择特征。使用准确性、精确性、召回率、F1分数和接受者操作特征曲线下面积(AUC)来衡量模型的分类性能。采用10折交叉验证来分离训练数据和测试数据。所选特征用于构建五个分类器模型:支持向量机、随机森林、梯度提升、朴素贝叶斯和AdaBoost分类器。随机森林模型表现最佳,测试队列的AUC为0.81,准确性为0.83,F1分数为0.88,召回率为0.93,精确性为0.85。结果表明,从多参数MRI图像中提取的基于机器学习的影像组学特征可为术前预测胶质瘤分级提供一种非侵入性方法。在本研究中,我们从T2W MRI序列的单个横断面图像中提取了影像组学特征,并利用这些特征构建了一个相当稳健的模型,以区分低级别胶质瘤和高级别胶质瘤(4级胶质瘤)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d59b/10305272/a47d65ac7951/jpm-13-00920-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验