Panchu Sarojini Jeeva, Raju Kumar, Swart Hendrik C, Chokkalingam Bharatiraja, Maaza Malik, Henini Mohamed, Moodley Mathew K
Discipline of Physics, School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa.
Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa.
ACS Omega. 2021 Feb 11;6(7):4542-4550. doi: 10.1021/acsomega.0c02576. eCollection 2021 Feb 23.
Wide band gap luminescent MoS quantum dots (QDs) and MoS nanocrystals (NCs) have been synthesized by using laser-assisted chemical vapour deposition and used as an electrode material in supercapacitors. Size-dependent properties of the MoS QDs and NCs were examined by UV-vis absorption, photoluminescence, and Raman spectroscopy. The morphological evolution of the NCs and QDs were characterized by using field emission scanning electron microscopy, high-resolution transmission electron microscopy, and atomic force microscopy. The as-synthesized uniform QDs with a size of ∼2 nm exhibited an extended electrochemical potential window of 0.9 V with a specific capacitance value of 255 F/g, while the NCs values were 205 F/g and 0.8 V and the pristine MoS with values of 105 F/g and 0.6 V at a scan rate of 1 mV s. A shorter conductive pathway and 3D quantum confinement of MoS QDs that exhibited a higher number of active sites ensure that the efficient charge storage kinetics along with the intercalation processes at the available edge sites enable significant widening of operating potential window and enhance the capacitance. The symmetric device constructed with the QDs showed a remarkable device capacitance of 50 F/g at a scan rate of 1 mV s with an energy density of ∼5.7 W h kg and achieved an excellent cycle stability of 10,000 consecutive cycles with ∼95% capacitance retention.
通过激光辅助化学气相沉积法合成了宽带隙发光的二硫化钼量子点(QDs)和二硫化钼纳米晶体(NCs),并将其用作超级电容器的电极材料。通过紫外-可见吸收光谱、光致发光光谱和拉曼光谱研究了二硫化钼量子点和纳米晶体的尺寸依赖性特性。利用场发射扫描电子显微镜、高分辨率透射电子显微镜和原子力显微镜对纳米晶体和量子点的形态演变进行了表征。合成的尺寸约为2 nm的均匀量子点在扫描速率为1 mV/s时表现出0.9 V的扩展电化学势窗口,比电容值为255 F/g,而纳米晶体的值分别为205 F/g和0.8 V,原始二硫化钼的值为105 F/g和0.6 V。二硫化钼量子点较短的导电路径和三维量子限制表现出更多的活性位点,确保了有效的电荷存储动力学以及在可用边缘位点的嵌入过程,从而显著拓宽了工作电位窗口并提高了电容。由量子点构建的对称器件在扫描速率为1 mV/s时显示出50 F/g的显著器件电容,能量密度约为5.7 W h/kg,并在10000次连续循环中实现了约95%的电容保持率的优异循环稳定性。