Suppr超能文献

二维金属有机框架界面的外延自组装用于神经递质的电化学生物传感器检测。

Epitaxial Self-Assembly of Interfaces of 2D Metal-Organic Frameworks for Electroanalytical Detection of Neurotransmitters.

机构信息

Department of Chemistry, Burke Laboratory, Dartmouth College, 41 College Street, Hanover, New Hampshire 03755, United States.

Department of Chemical Engineering, Kingsbury Hall, University of New Hampshire, 33 Academic Way, Durham, New Hampshire 03824, United States.

出版信息

ACS Nano. 2022 Sep 27;16(9):13869-13883. doi: 10.1021/acsnano.2c02529. Epub 2022 Sep 13.

Abstract

This paper identifies the electrochemical properties of individual facets of anisotropic layered conductive metal-organic frameworks (MOFs) based on M(2,3,6,7,10,11-hexahydroxytriphenylene) (M(HHTP)) (M = Co, Ni). The electroanalytical advantages of each facet are then applied toward the electrochemical detection of neurochemicals. By employing epitaxially controlled deposition of M(HHTP) MOFs on electrodes, the contribution of the basal plane ({001} facets) and edge sites ({100} facets) of these MOFs can be individually determined using electrochemical characterization techniques. Despite having a lower observed heterogeneous electron transfer rate constant, the {001} facets of the M(HHTP) systems prove more selective and sensitive for the detection of dopamine than the {100} facets of the same MOF, with the limit of detection (LOD) of 9.9 ± 2 nM in phosphate-buffered saline and 214 ± 48 nM in a simulated cerebrospinal fluid. Langmuir isotherm studies accompanied by all-atom MD simulations suggested that the observed improvement in performance and selectivity is related to the adsorption characteristics of analytes on the basal plane versus edge sites of the MOF interfaces. This work establishes that the distinct crystallographic facets of 2D MOFs can be used to control the fundamental interactions between analyte and electrode, leading to tunable electrochemical properties by controlling their preferential orientation through self-assembly.

摘要

本文确定了各向异性层状导电金属有机骨架(MOFs)中基于 M(2,3,6,7,10,11-六羟基三苯)(M(HHTP))(M = Co,Ni)的各晶面的电化学性质。然后,将每个晶面的电分析优势应用于神经化学物质的电化学检测中。通过在电极上外延控制沉积 M(HHTP) MOF,可以使用电化学表征技术分别确定这些 MOF 的基面({001}晶面)和边缘位点({100}晶面)的贡献。尽管观察到的非均相电子转移速率常数较低,但 M(HHTP)体系的{001}晶面在检测多巴胺方面比相同 MOF 的{100}晶面更具选择性和灵敏性,在磷酸盐缓冲盐中的检测限(LOD)为 9.9 ± 2 nM,在模拟脑脊髓液中的检测限为 214 ± 48 nM。伴随全原子 MD 模拟的朗缪尔等温线研究表明,观察到的性能和选择性的提高与分析物在 MOF 界面的基面与边缘位点上的吸附特性有关。这项工作确立了二维 MOF 的不同晶体晶面可用于控制分析物与电极之间的基本相互作用,通过控制其通过自组装的优先取向来实现可调谐的电化学性质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0caf/9527791/d4d319028e57/nn2c02529_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验