用于具有纳摩尔灵敏度的电化学生物传感器的分子控制聚酰亚胺上杂原子掺杂石墨烯的激光直写

Laser direct write of heteroatom-doped graphene on molecularly controlled polyimides for electrochemical biosensors with nanomolar sensitivity.

作者信息

Nam Ki-Ho, Abdulhafez Moataz, Castagnola Elisa, Tomaraei Golnaz Najaf, Cui Xinyan Tracy, Bedewy Mostafa

机构信息

Department of Industrial Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA, 15261, USA.

Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA, 15261, USA.

出版信息

Carbon N Y. 2022 Mar;188:209-219. doi: 10.1016/j.carbon.2021.10.010. Epub 2021 Oct 5.

Abstract

Fabrication of heteroatom-doped graphene electrodes remains a challenging endeavor, especially on flexible substrates. Precise chemical and morphological control is even more challenging for patterned microelectrodes. We herein demonstrate a scalable process for directly generating micropatterns of heteroatom-doped porous graphene on polyimide with different backbones using a continuous-wave infrared laser. Conventional two-step polycondensation of 4,4'-oxydianiline with three different tetracarboxylic dianhydrides enabled the fabrication of fully aromatic polyimides with various internal linkages such as phenylene, trifluoromethyl or sulfone groups. Accordingly, we leverage this laser-induced polymer-to-doped-graphene conversion for fabricating electrically conductive microelectrodes with efficient utilization of heteroatoms (N-doped, F-doped, and S-doped). Tuning laser fluence enabled achieving electrical resistivity lower than ~13 Ω sq for F-doped and N-doped graphene. Finally, our microelectrodes exhibit superior performance for electrochemical sensing of dopamine, one of the important neurotransmitters in the brain. Compared with carbon fiber microelectrodes, the gold standard in electrochemical dopamine sensing, our F-doped high surface area graphene microelectrodes demonstrated 3 order of magnitude higher sensitivity per unit area, detecting dopamine concentrations as low as 10 nM with excellent reproducibility. Hence, our approach is promising for facile fabrication of microelectrodes with superior capabilities for various electrochemical and sensing applications including early diagnosis of neurological disorders.

摘要

杂原子掺杂石墨烯电极的制备仍然是一项具有挑战性的工作,尤其是在柔性基板上。对于图案化微电极而言,精确的化学和形态控制更具挑战性。我们在此展示了一种可扩展的工艺,该工艺使用连续波红外激光在具有不同主链的聚酰亚胺上直接生成杂原子掺杂的多孔石墨烯微图案。4,4'-二氨基二苯醚与三种不同的四羧酸二酐进行常规的两步缩聚反应,能够制备出具有各种内部连接基团(如亚苯基、三氟甲基或砜基)的全芳香族聚酰亚胺。因此,我们利用这种激光诱导的聚合物到掺杂石墨烯的转化来制造导电微电极,并有效利用杂原子(N掺杂、F掺杂和S掺杂)。调节激光能量密度能够实现F掺杂和N掺杂石墨烯的电阻率低于约13Ω/sq。最后,我们的微电极在检测大脑中重要神经递质之一多巴胺的电化学传感方面表现出卓越性能。与电化学多巴胺传感的金标准——碳纤维微电极相比,我们的F掺杂高表面积石墨烯微电极每单位面积的灵敏度高出3个数量级,能够检测低至10 nM的多巴胺浓度,且具有出色的重现性。因此,我们的方法有望用于简便制备具有卓越性能的微电极,适用于各种电化学和传感应用,包括神经疾病的早期诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索