Suppr超能文献

激光刻蚀通过重构纳米碳复合材料将塑料废物转化为用于非侵入式多巴胺检测的生物传感器。

Laser Scribing Turns Plastic Waste into a Biosensor via the Restructuration of Nanocarbon Composites for Noninvasive Dopamine Detection.

机构信息

Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China.

Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, Shenyang 110016, China.

出版信息

Biosensors (Basel). 2023 Aug 12;13(8):810. doi: 10.3390/bios13080810.

Abstract

The development of affordable and compact noninvasive point-of-care (POC) dopamine biosensors for the next generation is currently a major and challenging problem. In this context, a highly sensitive, selective, and low-cost sensing probe is developed by a simple one-step laser-scribing process of plastic waste. A flexible POC device is developed as a prototype and shows a highly specific response to dopamine in the real sample (urine) as low as 100 pmol/L in a broad linear range of 10-10 mol/L. The 3D topological feature, carrier kinetics, and surface chemistry are found to improve with the formation of high-density metal-embedded graphene-foam composite driven by laser irradiation on the plastic-waste surface. The development of various kinds of flexible and tunable biosensors by plastic waste is now possible thanks to the success of this simple, but effective, laser-scribing technique, which is capable of modifying the matrix's electronic and chemical composition.

摘要

开发经济实惠且紧凑的下一代即时检测(POC)多巴胺生物传感器目前是一个重大且具有挑战性的问题。在这种情况下,通过对塑料废物进行简单的一步激光刻蚀工艺,开发出了一种高灵敏度、选择性和低成本的传感探针。作为原型开发了一种柔性 POC 设备,该设备在很宽的 10-10 摩尔/升线性范围内对实际样品(尿液)中的多巴胺表现出高达 100 皮摩尔/升的高度特异性响应。研究发现,通过激光在塑料废物表面照射形成高密度金属嵌入的石墨烯泡沫复合材料,提高了 3D 拓扑特征、载流子动力学和表面化学性质。由于这种简单但有效的激光刻蚀技术的成功,现在可以通过塑料废物开发各种灵活和可调谐的生物传感器,这种技术能够改变基质的电子和化学成分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b98b/10452382/2cf442256802/biosensors-13-00810-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验