Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD, USA 57701; BioSystems Networks & Translational Research (BioSNTR), 501 East Saint Joseph Street, Rapid City, SD, USA 57701.
Biomedical Engineering, University of South Dakota, 4800 N Career Avenue, Sioux Falls, SD, USA 57107; BioSystems Networks & Translational Research (BioSNTR), 501 East Saint Joseph Street, Rapid City, SD, USA 57701.
J Hazard Mater. 2021 Jul 15;414:125514. doi: 10.1016/j.jhazmat.2021.125514. Epub 2021 Feb 24.
Zeolitic imidazolate framework-8 (ZIF-8) nanoparticles have emerged as a promising platform for drug delivery and controlled release. Considering most ZIF-8 nanoparticle drug carriers are designed to be administered intravenously, and thus would directly contact vascular smooth muscle cells (VSMCs) in many circumstances, the potential interactions of ZIF-8 nanoparticles with VSMCs require investigation. Here, the effects of low doses of ZIF-8 nanoparticles on VSMC morphology, actin organization, and contractility are investigated. Two nanoscale imaging tools, atomic force microscopy, and direct stochastic optical reconstruction microscopy, show that even at the concentrations (12.5 and 25 µg/ml) that were deemed "safe" by conventional biochemical cell assays (MTT and LDH assays), ZIF-8 nanoparticles can still cause changes in cell morphology and actin cytoskeleton organization at the cell apical and basal surfaces. These cytoskeletal structural changes impair the contractility function of VSMCs in response to Angiotensin II, a classic vasoconstrictor. Based on intracellular zinc and actin polymerization assays, we conclude that the increased intracellular Zn concentration due to the uptake and dissociation of ZIF-8 nanoparticles could cause the actin cytoskeleton dis-organization, as the elevated Zn directly disrupts the actin assembly process, leading to altered actin organization such as branches and networks. Since the VSMC phenotype change and loss of contractility are fundamental to the development of atherosclerosis and related cardiovascular diseases, it is worth noting that these low doses of ZIF-8 nanoparticles administered intravenously could still be a safety concern in terms of cardiovascular risks. Moving forward, it is imperative to re-consider the "safe" nanoparticle dosages determined by biochemical cell assays alone, and take into account the impact of these nanoparticles on the biophysical characteristics of VSMCs, including changes in the actin cytoskeleton and cell morphology.
沸石咪唑酯骨架-8(ZIF-8)纳米颗粒已成为药物传递和控制释放的有前途的平台。考虑到大多数 ZIF-8 纳米颗粒药物载体被设计为静脉内给药,并且在许多情况下会直接与血管平滑肌细胞(VSMCs)接触,因此需要研究 ZIF-8 纳米颗粒与 VSMCs 的潜在相互作用。在这里,研究了低剂量 ZIF-8 纳米颗粒对 VSMC 形态、肌动蛋白组织和收缩性的影响。两种纳米级成像工具,原子力显微镜和直接随机光学重建显微镜,表明即使在浓度(12.5 和 25μg/ml)被常规生化细胞测定(MTT 和 LDH 测定)认为“安全”的情况下,ZIF-8 纳米颗粒仍会导致细胞形态和细胞顶和基底表面肌动蛋白细胞骨架组织的变化。这些细胞骨架结构的变化损害了 VSMC 对血管紧张素 II(一种经典的血管收缩剂)的收缩功能。基于细胞内锌和肌动蛋白聚合测定,我们得出结论,由于 ZIF-8 纳米颗粒的摄取和解离导致细胞内 Zn 浓度增加,可能导致肌动蛋白细胞骨架解聚,因为升高的 Zn 直接破坏了肌动蛋白组装过程,导致肌动蛋白组织发生改变,如分支和网络。由于 VSMC 表型改变和收缩性丧失是动脉粥样硬化和相关心血管疾病发展的基础,值得注意的是,这些静脉内给予的低剂量 ZIF-8 纳米颗粒在心血管风险方面仍然存在安全隐患。展望未来,必须重新考虑仅通过生化细胞测定确定的“安全”纳米颗粒剂量,并考虑这些纳米颗粒对 VSMCs 生物物理特性的影响,包括肌动蛋白细胞骨架和细胞形态的变化。