Ocean and Earth Science, University of Southampton, SO14 3ZH Southampton, United Kingdom;
Ocean Biogeochemistry and Ecosystems, National Oceanography Centre, Southampton, SO14 3ZH, United Kingdom.
Proc Natl Acad Sci U S A. 2021 Mar 9;118(10). doi: 10.1073/pnas.2007388118.
Marine microbial communities are highly interconnected assemblages of organisms shaped by ecological drift, natural selection, and dispersal. The relative strength of these forces determines how ecosystems respond to environmental gradients, how much diversity is resident in a community or population at any given time, and how populations reorganize and evolve in response to environmental perturbations. In this study, we introduce a globally resolved population-genetic ocean model in order to examine the interplay of dispersal, selection, and adaptive evolution and their effects on community assembly and global biogeography. We find that environmental selection places strong constraints on global dispersal, even in the face of extremely high assumed rates of adaptation. Changing the relative strengths of dispersal, selection, and adaptation has pronounced effects on community assembly in the model and suggests that barriers to dispersal play a key role in the structuring of marine communities, enhancing global biodiversity and the importance of local historical contingencies.
海洋微生物群落是由生态漂移、自然选择和扩散塑造的高度相互关联的生物组合。这些力量的相对强度决定了生态系统对环境梯度的响应方式、在任何给定时间内群落或种群中存在多少多样性,以及种群如何响应环境干扰进行重组和进化。在这项研究中,我们引入了一个全球分辨率的种群遗传海洋模型,以研究扩散、选择和适应性进化的相互作用及其对群落组装和全球生物地理学的影响。我们发现,即使在假设的极高适应率的情况下,环境选择也对全球扩散施加了很强的限制。改变扩散、选择和适应的相对强度对模型中的群落组装有显著影响,并表明扩散障碍在海洋群落的结构中起着关键作用,增强了全球生物多样性和局部历史偶然性的重要性。