Institute for Systems Genetics, NYU Langone Health, New York, NY 10016.
Institute for Systems Genetics, NYU Langone Health, New York, NY 10016;
Proc Natl Acad Sci U S A. 2021 Mar 9;118(10). doi: 10.1073/pnas.2023952118.
Routine rewriting of loci associated with human traits and diseases would facilitate their functional analysis. However, existing DNA integration approaches are limited in terms of scalability and portability across genomic loci and cellular contexts. We describe Big-IN, a versatile platform for targeted integration of large DNAs into mammalian cells. CRISPR/Cas9-mediated targeting of a landing pad enables subsequent recombinase-mediated delivery of variant payloads and efficient positive/negative selection for correct clones in mammalian stem cells. We demonstrate integration of constructs up to 143 kb, and an approach for one-step scarless delivery. We developed a staged pipeline combining PCR genotyping and targeted capture sequencing for economical and comprehensive verification of engineered stem cells. Our approach should enable combinatorial interrogation of genomic functional elements and systematic locus-scale analysis of genome function.
常规重写与人类特征和疾病相关的基因座将有助于对其进行功能分析。然而,现有的 DNA 整合方法在可扩展性和跨基因组基因座和细胞环境的可移植性方面存在限制。我们描述了 Big-IN,这是一种用于将大型 DNA 靶向整合到哺乳动物细胞中的多功能平台。CRISPR/Cas9 介导的着陆垫靶向允许随后使用重组酶介导的变体有效负载的递送,并且在哺乳动物干细胞中进行正确克隆的高效正/负选择。我们证明了多达 143 kb 的构建体的整合,以及一种用于一步无痕递送的方法。我们开发了一个分阶段的流水线,结合 PCR 基因分型和靶向捕获测序,用于经济高效且全面地验证工程化干细胞。我们的方法应该能够组合式研究基因组功能元件,并系统地进行基因组功能的基因座规模分析。