School of Engineering, RMIT University, Australia.
CSIRO Manufacturing, Clayton, Victoria, Australia.
J Synchrotron Radiat. 2021 Mar 1;28(Pt 2):566-575. doi: 10.1107/S1600577521001314. Epub 2021 Feb 18.
In recent years, major capability improvements at synchrotron beamlines have given researchers the ability to capture more complex structures at a higher resolution within a very short time. This opens up the possibility of studying dynamic processes and observing resulting structural changes over time. However, such studies can create a huge quantity of 3D image data, which presents a major challenge for segmentation and analysis. Here tomography experiments at the Australian synchrotron source are examined, which were used to study bread dough formulations during rising and baking, resulting in over 460 individual 3D datasets. The current pipeline for segmentation and analysis involves semi-automated methods using commercial software that require a large amount of user input. This paper focuses on exploring machine learning methods to automate this process. The main challenge to be faced is in generating adequate training datasets to train the machine learning model. Creating training data by manually segmenting real images is very labour-intensive, so instead methods of automatically creating synthetic training datasets which have the same attributes of the original images have been tested. The generated synthetic images are used to train a U-Net model, which is then used to segment the original bread dough images. The trained U-Net outperformed the previously used segmentation techniques while taking less manual effort. This automated model for data segmentation would alleviate the time-consuming aspects of experimental workflow and would open the door to perform 4D characterization experiments with smaller time steps.
近年来,同步加速器光束线的重大能力提升使研究人员能够在非常短的时间内以更高的分辨率捕捉更复杂的结构。这为研究动态过程和观察随时间产生的结构变化提供了可能性。然而,此类研究可能会产生大量的 3D 图像数据,这给分割和分析带来了巨大的挑战。本文研究了澳大利亚同步加速器光源的断层扫描实验,这些实验用于研究面团在发酵和烘焙过程中的配方,共产生了超过 460 个独立的 3D 数据集。目前的分割和分析流程涉及使用商业软件的半自动方法,这些方法需要大量的用户输入。本文重点探讨了使用机器学习方法来实现这个过程的自动化。需要面对的主要挑战是生成足够的训练数据集来训练机器学习模型。通过手动分割真实图像来创建训练数据非常耗费人力,因此测试了自动创建具有原始图像相同属性的合成训练数据集的方法。生成的合成图像用于训练 U-Net 模型,然后该模型用于分割原始面包面团图像。经过训练的 U-Net 模型在减少人工干预的同时,比之前使用的分割技术表现更好。这种用于数据分割的自动化模型可以减轻实验工作流程耗时的方面,并为使用更小的时间步长进行 4D 特征描述实验打开大门。