Suppr超能文献

基于动态 CEUS 成像的甲状腺结节识别的层次时间注意网络。

Hierarchical Temporal Attention Network for Thyroid Nodule Recognition Using Dynamic CEUS Imaging.

出版信息

IEEE Trans Med Imaging. 2021 Jun;40(6):1646-1660. doi: 10.1109/TMI.2021.3063421. Epub 2021 Jun 1.

Abstract

Contrast-enhanced ultrasound (CEUS) has emerged as a popular imaging modality in thyroid nodule diagnosis due to its ability to visualize vascular distribution in real time. Recently, a number of learning-based methods are dedicated to mine pathological-related enhancement dynamics and make prediction at one step, ignoring a native diagnostic dependency. In clinics, the differentiation of benign or malignant nodules always precedes the recognition of pathological types. In this paper, we propose a novel hierarchical temporal attention network (HiTAN) for thyroid nodule diagnosis using dynamic CEUS imaging, which unifies dynamic enhancement feature learning and hierarchical nodules classification into a deep framework. Specifically, this method decomposes the diagnosis of nodules into an ordered two-stage classification task, where diagnostic dependency is modeled by Gated Recurrent Units (GRUs). Besides, we design a local-to-global temporal aggregation (LGTA) operator to perform a comprehensive temporal fusion along the hierarchical prediction path. Particularly, local temporal information is defined as typical enhancement patterns identified with the guidance of perfusion representation learned from the differentiation level. Then, we leverage an attention mechanism to embed global enhancement dynamics into each identified salient pattern. In this study, we evaluate the proposed HiTAN method on the collected CEUS dataset of thyroid nodules. Extensive experimental results validate the efficacy of dynamic patterns learning, fusion and hierarchical diagnosis mechanism.

摘要

超声造影(CEUS)在甲状腺结节诊断中已成为一种流行的成像方式,因为它能够实时可视化血管分布。最近,一些基于学习的方法专注于挖掘与病理相关的增强动力学,并一步做出预测,忽略了固有诊断依赖性。在临床上,良性或恶性结节的区分总是先于对病理类型的识别。在本文中,我们提出了一种使用动态 CEUS 成像的甲状腺结节诊断的新型分层时间注意网络(HiTAN),它将动态增强特征学习和分层结节分类统一到一个深度框架中。具体来说,该方法将结节的诊断分解为一个有序的两阶段分类任务,其中通过门控循环单元(GRU)对诊断依赖性进行建模。此外,我们设计了一种局部到全局时间聚合(LGTA)算子,沿着分层预测路径进行全面的时间融合。特别地,局部时间信息被定义为与从分化水平学习到的灌注表示指导下识别的典型增强模式。然后,我们利用注意力机制将全局增强动力学嵌入到每个识别出的显著模式中。在这项研究中,我们在收集的甲状腺结节 CEUS 数据集上评估了所提出的 HiTAN 方法。广泛的实验结果验证了动态模式学习、融合和分层诊断机制的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验