Suppr超能文献

一种用于甲状腺结节的新型超声图像诊断方法。

A novel ultrasound image diagnostic method for thyroid nodules.

机构信息

College of Electronic and Information Engineering, Inner Mongolia University, Hohhot, 010021, China.

Department of Imaging Medicine, Inner Mongolia People's Hospital, Hohhot, 010017, China.

出版信息

Sci Rep. 2023 Jan 30;13(1):1654. doi: 10.1038/s41598-023-28932-2.

Abstract

The incidence of thyroid nodules is increasing year by year. Accurate determination of benign and malignant nodules is an important basis for formulating treatment plans. Ultrasonography is the most widely used methodology in the diagnosis of benign and malignant nodules, but diagnosis by doctors is highly subjective, and the rates of missed diagnosis and misdiagnosis are high. To improve the accuracy of clinical diagnosis, this paper proposes a new diagnostic model based on deep learning. The diagnostic model adopts the diagnostic strategy of localization-classification. First, the distribution laws of the nodule size and nodule aspect ratio are obtained through data statistics, a multiscale localization network structure is a priori designed, and the nodule aspect ratio is obtained from the positioning results. Then, uncropped ultrasound images and nodule area image are correspondingly input into a two-way classification network, and an improved attention mechanism is used to enhance the feature extraction performance. Finally, the deep features, the shallow features, and the nodule aspect ratio are fused, and a fully connected layer is used to complete the classification of benign and malignant nodules. The experimental dataset consists of 4021 ultrasound images, where each image has been labeled under the guidance of doctors, and the ratio of the training set, validation set, and test set sizes is close to 3:1:1. The experimental results show that the accuracy of the multiscale localization network reaches 93.74%, and that the accuracy, specificity, and sensitivity of the classification network reach 86.34%, 81.29%, and 90.48%, respectively. Compared with the champion model of the TNSCUI 2020 classification competition, the accuracy rate is 1.52 points higher. Therefore, the network model proposed in this paper can effectively diagnose benign and malignant thyroid nodules.

摘要

甲状腺结节的发病率逐年上升。准确判断良恶性结节是制定治疗方案的重要依据。超声检查是诊断良恶性结节最常用的方法,但医生的诊断具有很强的主观性,误诊和漏诊率较高。为了提高临床诊断的准确性,本文提出了一种基于深度学习的新诊断模型。该诊断模型采用定位-分类的诊断策略。首先,通过数据统计得到结节大小和结节纵横比的分布规律,先验设计多尺度定位网络结构,从定位结果中得到结节纵横比。然后,将未经裁剪的超声图像和结节区域图像分别输入双向分类网络,并使用改进的注意力机制增强特征提取性能。最后,将深、浅层特征与结节纵横比融合,使用全连接层完成良恶性结节的分类。实验数据集由 4021 张超声图像组成,每张图像都在医生的指导下进行了标注,训练集、验证集和测试集的比例接近 3:1:1。实验结果表明,多尺度定位网络的准确率达到 93.74%,分类网络的准确率、特异性和灵敏度分别达到 86.34%、81.29%和 90.48%。与 2020 年 TNSCUI 分类竞赛的冠军模型相比,准确率提高了 1.52 个百分点。因此,本文提出的网络模型可以有效诊断良恶性甲状腺结节。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1be2/9886982/2e24ae531c1f/41598_2023_28932_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验