Scheda Riccardo, Vitali Silvia, Giampieri Enrico, Pagnini Gianni, Zironi Isabella
DIFA-Physics and Astronomy Department, University of Bologna, Viale C. Berti Pichat 6/2, 40127 Bologna, Italy.
BCAM-Basque Center for Applied Mathematics, Alameda de Mazarredo 14, 48009 Bilbao, Spain.
Entropy (Basel). 2021 Feb 26;23(3):284. doi: 10.3390/e23030284.
Cellular contacts modify the way cells migrate in a cohesive group with respect to a free single cell. The resulting motion is persistent and correlated, with cells' velocities self-aligning in time. The presence of a dense agglomerate of cells makes the application of single particle tracking techniques to define cells dynamics difficult, especially in the case of phase contrast images. Here, we propose an original pipeline for the analysis of phase contrast images of the wound healing scratch assay acquired in time-lapse, with the aim of extracting single particle trajectories describing the dynamics of the wound closure. In such an approach, the membrane of the cells at the border of the wound is taken as a unicum, i.e., the wound edge, and the dynamics is described by the stochastic motion of an ensemble of points on such a membrane, i.e., pseudo-particles. For each single frame, the pipeline of analysis includes: first, a texture classification for separating the background from the cells and for identifying the wound edge; second, the computation of the coordinates of the ensemble of pseudo-particles, chosen to be uniformly distributed along the length of the wound edge. We show the results of this method applied to a glioma cell line (T98G) performing a wound healing scratch assay without external stimuli. We discuss the efficiency of the method to assess cell motility and possible applications to other experimental layouts, such as single cell motion. The pipeline is developed in the Python language and is available upon request.
细胞间接触改变了细胞在凝聚群体中相对于自由单细胞的迁移方式。由此产生的运动是持续且相关的,细胞速度会随时间自我对齐。细胞的密集团聚使得应用单粒子跟踪技术来定义细胞动力学变得困难,尤其是在相差图像的情况下。在这里,我们提出了一种原始的流程,用于分析延时拍摄的伤口愈合划痕试验的相差图像,目的是提取描述伤口闭合动力学的单粒子轨迹。在这种方法中,伤口边缘的细胞膜被视为一个整体,即伤口边缘,其动力学由该膜上一组点(即伪粒子)的随机运动来描述。对于每一帧,分析流程包括:首先,进行纹理分类,以将背景与细胞分离并识别伤口边缘;其次,计算伪粒子集合的坐标,这些伪粒子被选择沿伤口边缘的长度均匀分布。我们展示了该方法应用于进行无外部刺激的伤口愈合划痕试验的胶质瘤细胞系(T98G)的结果。我们讨论了该方法评估细胞运动性的效率以及在其他实验布局(如单细胞运动)中的可能应用。该流程是用Python语言开发的,可应要求提供。