Suppr超能文献

条件熵:一种潜在的压力数字标志物。

Conditional Entropy: A Potential Digital Marker for Stress.

作者信息

Keshmiri Soheil

机构信息

Advanced Telecommunications Research Institute International (ATR), Kyoto 619-0237, Japan.

出版信息

Entropy (Basel). 2021 Feb 26;23(3):286. doi: 10.3390/e23030286.

Abstract

Recent decades have witnessed a substantial progress in the utilization of brain activity for the identification of stress digital markers. In particular, the success of entropic measures for this purpose is very appealing, considering (1) their suitability for capturing both linear and non-linear characteristics of brain activity recordings and (2) their direct association with the brain signal variability. These findings rely on external stimuli to induce the brain stress response. On the other hand, research suggests that the use of different types of experimentally induced psychological and physical stressors could potentially yield differential impacts on the brain response to stress and therefore should be dissociated from more general patterns. The present study takes a step toward addressing this issue by introducing conditional entropy (CE) as a potential electroencephalography (EEG)-based resting-state digital marker of stress. For this purpose, we use the resting-state multi-channel EEG recordings of 20 individuals whose responses to stress-related questionnaires show significantly higher and lower level of stress. Through the application of representational similarity analysis (RSA) and K-nearest-neighbor (KNN) classification, we verify the potential that the use of CE can offer to the solution concept of finding an effective digital marker for stress.

摘要

近几十年来,在利用大脑活动识别压力数字标记方面取得了重大进展。特别是,熵测量方法在这方面的成功非常吸引人,原因如下:(1)它们适合捕捉大脑活动记录的线性和非线性特征;(2)它们与大脑信号变异性直接相关。这些发现依赖于外部刺激来诱发大脑应激反应。另一方面,研究表明,使用不同类型的实验诱导心理和生理应激源可能会对大脑对压力的反应产生不同的影响,因此应该与更一般的模式区分开来。本研究朝着解决这个问题迈出了一步,引入条件熵(CE)作为一种基于脑电图(EEG)的潜在静息态压力数字标记。为此,我们使用了20名个体的静息态多通道EEG记录,这些个体对压力相关问卷的回答显示出明显较高和较低的压力水平。通过应用表征相似性分析(RSA)和K近邻(KNN)分类,我们验证了使用CE为寻找有效的压力数字标记的解决方案概念提供的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e849/7996836/c47e952fa4dd/entropy-23-00286-g001.jpg

相似文献

1
Conditional Entropy: A Potential Digital Marker for Stress.
Entropy (Basel). 2021 Feb 26;23(3):286. doi: 10.3390/e23030286.
2
Attention Deficit Hyperactivity Disorder Diagnosis using non-linear univariate and multivariate EEG measurements: a preliminary study.
Phys Eng Sci Med. 2020 Jun;43(2):577-592. doi: 10.1007/s13246-020-00858-3. Epub 2020 Mar 27.
4
5
Classification of Resting-State Status Based on Sample Entropy and Power Spectrum of Electroencephalography (EEG).
Appl Bionics Biomech. 2020 Nov 10;2020:8853238. doi: 10.1155/2020/8853238. eCollection 2020.
9
Effect of channel density, inverse solutions and connectivity measures on EEG resting-state networks reconstruction: A simulation study.
Neuroimage. 2023 May 1;271:120006. doi: 10.1016/j.neuroimage.2023.120006. Epub 2023 Mar 11.
10
K-nearest-neighbor conditional entropy approach for the assessment of the short-term complexity of cardiovascular control.
Physiol Meas. 2013 Jan;34(1):17-33. doi: 10.1088/0967-3334/34/1/17. Epub 2012 Dec 17.

引用本文的文献

1
Movement Sensing Opportunities for Monitoring Dynamic Cognitive States.
Sensors (Basel). 2024 Nov 25;24(23):7530. doi: 10.3390/s24237530.
2
Stress Response Analysis via Dynamic Entropy in EEG: Caregivers in View.
Int J Environ Res Public Health. 2023 May 22;20(10):5913. doi: 10.3390/ijerph20105913.
3
Objective Assessments of Mental Fatigue During a Continuous Long-Term Stress Condition.
Front Hum Neurosci. 2021 Nov 10;15:733426. doi: 10.3389/fnhum.2021.733426. eCollection 2021.
5
A Review on Mental Stress Assessment Methods Using EEG Signals.
Sensors (Basel). 2021 Jul 26;21(15):5043. doi: 10.3390/s21155043.

本文引用的文献

1
Individual Cortical Entropy Profile: Test-Retest Reliability, Predictive Power for Cognitive Ability, and Neuroanatomical Foundation.
Cereb Cortex Commun. 2020 May 7;1(1):tgaa015. doi: 10.1093/texcom/tgaa015. eCollection 2020.
2
Energy Based Logic Mining Analysis with Hopfield Neural Network for Recruitment Evaluation.
Entropy (Basel). 2020 Dec 30;23(1):40. doi: 10.3390/e23010040.
3
Prefrontal Asymmetry BCI Neurofeedback Datasets.
Front Neurosci. 2020 Dec 18;14:601402. doi: 10.3389/fnins.2020.601402. eCollection 2020.
4
Entropy and the Brain: An Overview.
Entropy (Basel). 2020 Aug 21;22(9):917. doi: 10.3390/e22090917.
5
Self-rated amygdala activity: an auto-biological index of affective distress.
Personal Neurosci. 2019 Jun 13;2:e1. doi: 10.1017/pen.2019.1. eCollection 2019.
6
Discriminating stress from rest based on resting-state connectivity of the human brain: A supervised machine learning study.
Hum Brain Mapp. 2020 Aug 1;41(11):3089-3099. doi: 10.1002/hbm.25000. Epub 2020 Apr 15.
8
The neuroscience of sadness: A multidisciplinary synthesis and collaborative review.
Neurosci Biobehav Rev. 2020 Apr;111:199-228. doi: 10.1016/j.neubiorev.2020.01.006. Epub 2020 Jan 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验