Univ Rennes, INSERM, LTSI - UMR 1099, Rennes F-35000, France; Azm Center for Research in Biotechnology and Its Applications, EDST, Tripoli, Lebanon.
MINDIG, Rennes F-35000, France; LASeR - Lebanese Association for Scientific Research, Tripoli, Lebanon.
Neuroimage. 2023 May 1;271:120006. doi: 10.1016/j.neuroimage.2023.120006. Epub 2023 Mar 11.
Along with the study of brain activity evoked by external stimuli, the past two decades witnessed an increased interest in characterizing the spontaneous brain activity occurring during resting conditions. The identification of connectivity patterns in this so-called "resting-state" has been the subject of a great number of electrophysiology-based studies, using the Electro/Magneto-Encephalography (EEG/MEG) source connectivity method. However, no consensus has been reached yet regarding a unified (if possible) analysis pipeline, and several involved parameters and methods require cautious tuning. This is particularly challenging when different analytical choices induce significant discrepancies in results and drawn conclusions, thereby hindering the reproducibility of neuroimaging research. Hence, our objective in this study was to shed light on the effect of analytical variability on outcome consistency by evaluating the implications of parameters involved in the EEG source connectivity analysis on the accuracy of resting-state networks (RSNs) reconstruction. We simulated, using neural mass models, EEG data corresponding to two RSNs, namely the default mode network (DMN) and dorsal attentional network (DAN). We investigated the impact of five channel densities (19, 32, 64, 128, 256), three inverse solutions (weighted minimum norm estimate (wMNE), exact low-resolution brain electromagnetic tomography (eLORETA), and linearly constrained minimum variance (LCMV) beamforming) and four functional connectivity measures (phase-locking value (PLV), phase-lag index (PLI), and amplitude envelope correlation (AEC) with and without source leakage correction), on the correspondence between reconstructed and reference networks. We showed that, with different analytical choices related to the number of electrodes, source reconstruction algorithm, and functional connectivity measure, high variability is present in the results. More specifically, our results show that a higher number of EEG channels significantly increased the accuracy of the reconstructed networks. Additionally, our results showed significant variability in the performance of the tested inverse solutions and connectivity measures. Such methodological variability and absence of analysis standardization represent a critical issue for neuroimaging studies that should be prioritized. We believe that this work could be useful for the field of electrophysiology connectomics, by increasing awareness regarding the challenge of variability in methodological approaches and its implications on reported results.
伴随着对外界刺激引发的大脑活动的研究,过去二十年见证了人们对描述在静息状态下自发大脑活动的兴趣增加。在这种所谓的“静息状态”中识别连通模式一直是大量基于电生理学的研究的主题,使用的是脑电图/脑磁图 (EEG/MEG) 源连通性方法。然而,对于一个统一的(如果可能的话)分析管道,尚未达成共识,并且一些涉及的参数和方法需要谨慎调整。当不同的分析选择导致结果和得出的结论存在显著差异,从而阻碍神经影像学研究的可重复性时,情况尤其具有挑战性。因此,我们在这项研究中的目标是通过评估 EEG 源连通性分析中涉及的参数对静息态网络 (RSN) 重建准确性的影响,阐明分析变异性对结果一致性的影响。我们使用神经质量模型模拟了对应于两个 RSN(默认模式网络 (DMN) 和背侧注意网络 (DAN))的 EEG 数据。我们研究了五个通道密度(19、32、64、128、256)、三种反演解决方案(加权最小范数估计 (wMNE)、精确低分辨率脑电磁层析成像 (eLORETA) 和线性约束最小方差 (LCMV) 波束形成)和四种功能连通性度量(锁相值 (PLV)、锁相滞后指数 (PLI) 和幅度包络相关 (AEC),包括和不包括源泄漏校正)对重建网络和参考网络之间对应关系的影响。我们表明,由于与电极数量、源重建算法和功能连通性度量相关的不同分析选择,结果存在高度变异性。具体来说,我们的结果表明,更多的 EEG 通道显著提高了重建网络的准确性。此外,我们的结果还表明,所测试的反演解决方案和连通性度量的性能存在显著差异。这种方法学的可变性和缺乏分析标准化代表了神经影像学研究中的一个关键问题,应该优先考虑。我们相信,这项工作对于电生理学连接组学领域是有用的,它提高了对方法学方法变异性及其对报告结果的影响的认识。