Suppr超能文献

重症监护病房死亡率影响因素的预测:一项案例研究。

The prediction of mortality influential variables in an intensive care unit: a case study.

作者信息

Khajehali Naghmeh, Khajehali Zohreh, Tarokh Mohammad Jafar

机构信息

K. N. Toosi University of Technology, Tehran, Iran.

Isfahan University of Medical Science, Isfahan, Iran.

出版信息

Pers Ubiquitous Comput. 2023;27(2):203-219. doi: 10.1007/s00779-021-01540-5. Epub 2021 Feb 26.

Abstract

The intensive care units (ICUs) are among the most expensive and essential parts of all hospitals for extremely ill patients. This study aims to predict mortality and explore the crucial factors affecting it. Generally, in the health care systems, having a fast and precise ICU mortality prediction for patients plays a key role in care quality, resulting in reduced costs and improved survival chances of the patients. In this study, we used a medical dataset, including patients' demographic details, underlying diseases, laboratory disorder, and LOS. Since accurate estimates are required to have optimal results, various data pre-processings as the initial steps are used here. Besides, machine learning models are employed to predict the risk of mortality ICU discharge. For AdaBoost model, these measures are considered AUC= 0.966, sensitivity (recall) = 87.88%, Kappa=0.859, F-measure = 89.23% making it, AdaBoost, accounts for the highest rate. Our model outperforms other comparison models by using various scenarios of data processing. The obtained results demonstrate that the high mortality can be caused by underlying diseases such as diabetes mellitus and high blood pressure, moderate Pulmonary Embolism Wells Score risk, platelet blood count less than 100000 (mcl), hypertension (HTN), high level of Bilirubin, smoking, and GCS level between 6 and 9.

摘要

重症监护病房(ICU)是所有医院中针对重症患者最昂贵且必不可少的部分。本研究旨在预测死亡率并探究影响死亡率的关键因素。一般来说,在医疗保健系统中,对患者进行快速且精确的ICU死亡率预测对护理质量起着关键作用,可降低成本并提高患者的生存几率。在本研究中,我们使用了一个医疗数据集,包括患者的人口统计学细节、基础疾病、实验室检查紊乱情况以及住院时长。由于需要准确估计才能获得最佳结果,因此在此处使用了各种数据预处理作为初始步骤。此外,采用机器学习模型来预测ICU出院时的死亡风险。对于AdaBoost模型,这些指标分别为:曲线下面积(AUC)= 0.966,灵敏度(召回率)= 87.88%,卡帕值(Kappa)= 0.859,F值(F-measure)= 89.23%,这使得AdaBoost模型占比最高。我们的模型通过使用各种数据处理场景优于其他对比模型。所得结果表明,高死亡率可能由糖尿病和高血压等基础疾病、中度肺栓塞Wells评分风险、血小板计数低于100000(每微升)、高血压(HTN)、高胆红素水平、吸烟以及格拉斯哥昏迷量表(GCS)评分在6至9分之间引起。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/021c/7907311/7952fc157ac9/779_2021_1540_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验