Suppr超能文献

通过半胱氨酸交联结合蛋白水解凝胶分析探究细胞中靶蛋白的构象状态

Probing Conformational States of a Target Protein in Cells by Cysteine Cross-linking Coupled with Proteolytic Gel Analysis.

作者信息

Kumar Sujeet, Ruiz Natividad

机构信息

Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA.

出版信息

Bio Protoc. 2019 Jun 20;9(12):e3271. doi: 10.21769/BioProtoc.3271.

Abstract

Transporters are dynamic membrane proteins that are essential to the physiology of cells. To function, transporters must cycle between various conformational states, so to understand their mechanistic details, it is critical to characterize how their structure changes during the transport cycle. One approach to studying the dynamics of transporters takes advantage of the chemistry of cysteine by using sulfhydryl-reactive, bi-functional cross-linkers to probe changes in the distance between two specific residues that have been substituted to cysteine. This approach is mostly used to study transporters , not in their natural cellular environment. Here we describe a protocol based on structure-guided cysteine cross-linking and proteolysis-coupled gel analysis to probe conformational changes of a target transporter in live cells. Although cross-linking approaches have been used to probe the proximity between transmembrane segments in membrane proteins , to our knowledge this protocol is the first to be used to interrogate transporter dynamics in cells. The use of this protocol is optimal for proteins with known or modeled structures to guide the replacement of specific residues with cysteines and the selection of cross-linking agents with various spacer arm lengths. This protocol allows for discriminating easily cross-linked and uncross-linked species and does not require the often difficult or unavailable reconstitution of transport activity in an system. In addition, this protocol could be used to probe the conformation of transporters in cells treated with transport inhibitors in order to better understand their mechanism of action, and potentially dynamic interactions between domains in proteins that are not transporters.

摘要

转运蛋白是对细胞生理功能至关重要的动态膜蛋白。为了发挥功能,转运蛋白必须在各种构象状态之间循环,因此,要了解其机制细节,关键在于表征其在转运循环过程中的结构变化。一种研究转运蛋白动力学的方法利用了半胱氨酸的化学性质,通过使用巯基反应性双功能交联剂来探测已被替换为半胱氨酸的两个特定残基之间距离的变化。这种方法主要用于研究转运蛋白,而非在其天然细胞环境中。在此,我们描述了一种基于结构导向的半胱氨酸交联和蛋白水解偶联凝胶分析的方案,用于探测活细胞中目标转运蛋白的构象变化。尽管交联方法已被用于探测膜蛋白中跨膜片段之间的接近程度,但据我们所知,该方案是首个用于探究细胞中转运蛋白动力学的方法。对于具有已知或建模结构的蛋白质,使用该方案可优化特定残基被半胱氨酸替换以及选择具有不同间隔臂长度的交联剂。该方案能够轻松区分易交联和未交联的物种,并且不需要在体外系统中经常难以实现或无法实现的转运活性重建。此外,该方案可用于探测经转运抑制剂处理的细胞中转运蛋白的构象,以便更好地理解其作用机制,以及潜在地了解非转运蛋白的蛋白质结构域之间的动态相互作用。

相似文献

引用本文的文献

3
The Bacterial Cell Wall: From Lipid II Flipping to Polymerization.细菌细胞壁:从脂质 II 翻转到聚合。
Chem Rev. 2022 May 11;122(9):8884-8910. doi: 10.1021/acs.chemrev.1c00773. Epub 2022 Mar 11.

本文引用的文献

3
The structural basis of cystic fibrosis.囊性纤维化的结构基础。
Biochem Soc Trans. 2018 Oct 19;46(5):1093-1098. doi: 10.1042/BST20180296. Epub 2018 Aug 28.
4
Structure and mutagenic analysis of the lipid II flippase MurJ from .脂质 II 翻转酶 MurJ 的结构与诱变分析。
Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):6709-6714. doi: 10.1073/pnas.1802192115. Epub 2018 Jun 11.
5
Membrane Potential Is Required for MurJ Function.膜电位是 MurJ 功能所必需的。
J Am Chem Soc. 2018 Apr 4;140(13):4481-4484. doi: 10.1021/jacs.8b00942. Epub 2018 Mar 26.
7
Crystal structure of the MOP flippase MurJ in an inward-facing conformation.向内构象的MOP翻转酶MurJ的晶体结构。
Nat Struct Mol Biol. 2017 Feb;24(2):171-176. doi: 10.1038/nsmb.3346. Epub 2016 Dec 26.
8
Filling holes in peptidoglycan biogenesis of Escherichia coli.填补大肠杆菌肽聚糖生物合成中的漏洞。
Curr Opin Microbiol. 2016 Dec;34:1-6. doi: 10.1016/j.mib.2016.07.010. Epub 2016 Jul 22.
10
Lipid Flippases for Bacterial Peptidoglycan Biosynthesis.用于细菌肽聚糖生物合成的脂质翻转酶。
Lipid Insights. 2016 Jan 13;8(Suppl 1):21-31. doi: 10.4137/LPI.S31783. eCollection 2015.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验