Delgado Lidia, Baeza Nicolás, Pérez-Cruz Carla, López-Iglesias Carmen, Mercadé Elena
Crio-Microscòpia Electrònica, Centres Científics i Tecnològics, Universitat de Barcelona, Barcelona, Spain.
Secció de Microbiologia, Departament de Biologia, Sanitat i Medi Ambient, Universitat de Barcelona, Barcelona, Spain.
Bio Protoc. 2019 Sep 20;9(18):e3367. doi: 10.21769/BioProtoc.3367.
A protocol was developed to visualize and analyze the structure of membrane vesicles (MVs) from Gram-negative bacteria. It is now accepted that these micrometric spherical vesicles are commonly produced by cells from all three domains of life, so the protocol could be useful in the study of vesicles produced by eukaryotes and archaea as well as bacteria. The multiplicity of functions performed by MVs, related to cell communication, interaction with the immune system, pathogenesis, and nutrient acquisition, among others, has made MVs a hot topic of research. Due to their small size (25-300 nm), the observation of MVs requires electron microscopy and is usually performed by transmission electron microscopy (TEM) of negatively stained MVs. Other protocols applied for their visualization include scanning electron microscopy, TEM after fixation and embedding of vesicles, or even atomic force microscopy. In some of these techniques, vesicle structure is altered by drying, while others are time-consuming and most of them can generate artifacts. Cryo-TEM after plunge freezing allows the visualization of samples embedded in a thin film of vitreous ice, which preserves their native cellular structures and provides the highest available resolution for the imaging. This is achieved by very high cooling rates that turn the intrinsic water of cells into vitreous ice, avoiding crystal formation and phase segregation between water and solutes. In addition to other types of characterization, an accurate knowledge of MV structure, which can be obtained by this protocol, is essential for MV application in different fields.
已制定了一项方案,用于可视化和分析革兰氏阴性菌的膜泡(MVs)结构。现在人们已经认识到,这些微米级的球形膜泡通常由生命三个域的细胞产生,因此该方案可能有助于研究真核生物、古细菌以及细菌产生的膜泡。膜泡执行的多种功能,包括细胞通讯、与免疫系统的相互作用、发病机制以及营养获取等,使膜泡成为一个热门研究课题。由于其尺寸较小(25 - 300纳米),观察膜泡需要电子显微镜,通常通过对负染色的膜泡进行透射电子显微镜(TEM)观察。用于其可视化的其他方案包括扫描电子显微镜、对膜泡进行固定和包埋后的透射电子显微镜,甚至原子力显微镜。在这些技术中,有些会因干燥而改变膜泡结构,而其他技术则耗时较长,并且大多数都会产生假象。骤冷后的冷冻透射电子显微镜能够观察嵌入玻璃态冰薄膜中的样品,这种方法能保留其天然细胞结构,并提供最高可用分辨率的成像。这是通过极高的冷却速率实现的,该速率能将细胞内的固有水转化为玻璃态冰,避免晶体形成以及水和溶质之间的相分离。除其他类型的表征外,通过该方案获得的对膜泡结构的准确了解对于膜泡在不同领域的应用至关重要。